Normalized defining polynomial
\( x^{18} - 9 x^{17} + 16 x^{16} + 76 x^{15} - 304 x^{14} + 84 x^{13} + 1122 x^{12} - 1714 x^{11} - 220 x^{10} + 2464 x^{9} - 1596 x^{8} - 1124 x^{7} + 1128 x^{6} + 1970 x^{5} - 851 x^{4} - 3175 x^{3} + 5544 x^{2} - 3412 x + 968 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1612515237057830683893428407=-\,7^{9}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{22} a^{11} - \frac{1}{2} a^{4} + \frac{5}{11} a$, $\frac{1}{22} a^{12} - \frac{1}{2} a^{5} + \frac{5}{11} a^{2}$, $\frac{1}{22} a^{13} - \frac{1}{2} a^{6} + \frac{5}{11} a^{3}$, $\frac{1}{16478} a^{14} - \frac{1}{2354} a^{13} + \frac{30}{8239} a^{12} - \frac{269}{16478} a^{11} + \frac{23}{749} a^{10} - \frac{3}{214} a^{9} + \frac{13}{749} a^{8} - \frac{221}{1498} a^{7} + \frac{561}{1498} a^{6} + \frac{53}{107} a^{5} + \frac{2419}{16478} a^{4} + \frac{380}{1177} a^{3} - \frac{227}{2354} a^{2} - \frac{960}{8239} a + \frac{347}{749}$, $\frac{1}{16478} a^{15} + \frac{1}{1498} a^{13} + \frac{151}{16478} a^{12} + \frac{11}{1498} a^{11} + \frac{43}{214} a^{10} - \frac{121}{1498} a^{9} - \frac{39}{1498} a^{8} + \frac{256}{749} a^{7} + \frac{25}{214} a^{6} - \frac{6359}{16478} a^{5} + \frac{75}{214} a^{4} + \frac{35}{214} a^{3} + \frac{3435}{16478} a^{2} - \frac{332}{749} a + \frac{26}{107}$, $\frac{1}{119267764} a^{16} - \frac{2}{29816941} a^{15} - \frac{193}{59633882} a^{14} + \frac{29}{1217018} a^{13} + \frac{633981}{29816941} a^{12} + \frac{252733}{29816941} a^{11} + \frac{645496}{2710631} a^{10} - \frac{48241}{2710631} a^{9} - \frac{1302017}{5421262} a^{8} - \frac{1844823}{5421262} a^{7} - \frac{214187}{59633882} a^{6} - \frac{13869150}{29816941} a^{5} - \frac{10129523}{29816941} a^{4} + \frac{11609685}{29816941} a^{3} - \frac{55065137}{119267764} a^{2} + \frac{12591827}{59633882} a - \frac{4115}{246421}$, $\frac{1}{4889978324} a^{17} + \frac{3}{1222494581} a^{16} - \frac{301}{49897738} a^{15} - \frac{21124}{1222494581} a^{14} - \frac{3358042}{1222494581} a^{13} + \frac{746269}{174642083} a^{12} + \frac{17988944}{1222494581} a^{11} + \frac{5981713}{222271742} a^{10} - \frac{304973}{20206522} a^{9} + \frac{25856987}{222271742} a^{8} + \frac{520192384}{1222494581} a^{7} - \frac{4202133}{26010523} a^{6} - \frac{463580492}{1222494581} a^{5} - \frac{355471563}{1222494581} a^{4} - \frac{7981135}{119267764} a^{3} - \frac{52085839}{349284166} a^{2} - \frac{10388200}{29816941} a - \frac{591921}{10103261}$
Class group and class number
$C_{19}$, which has order $19$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 386705.621198 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.1.12943.1 x3, 3.3.1849.1, 6.0.1172648743.1, 6.0.634207.1 x2, 6.0.1172648743.2, 9.3.2168227525807.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.634207.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $43$ | 43.9.6.1 | $x^{9} + 1290 x^{6} + 552851 x^{3} + 79507000$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 43.9.6.1 | $x^{9} + 1290 x^{6} + 552851 x^{3} + 79507000$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |