Normalized defining polynomial
\( x^{18} - 2 x^{17} + 16 x^{16} - 85 x^{15} + 328 x^{14} - 911 x^{13} + 2872 x^{12} - 3725 x^{11} + 10956 x^{10} - 4689 x^{9} + 21962 x^{8} + 993 x^{7} + 72400 x^{6} + 19893 x^{5} + 216145 x^{4} + 94987 x^{3} + 235274 x^{2} + 123520 x + 39464 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-160988252069740650830246966527=-\,13^{9}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{1064} a^{15} - \frac{5}{532} a^{14} - \frac{71}{1064} a^{13} - \frac{43}{266} a^{12} - \frac{163}{1064} a^{11} + \frac{3}{266} a^{10} - \frac{225}{1064} a^{9} - \frac{1}{76} a^{8} + \frac{261}{1064} a^{7} + \frac{37}{76} a^{6} - \frac{401}{1064} a^{5} - \frac{5}{28} a^{4} - \frac{261}{1064} a^{3} - \frac{73}{266} a^{2} - \frac{71}{266} a - \frac{58}{133}$, $\frac{1}{241528} a^{16} - \frac{2}{30191} a^{15} - \frac{3203}{241528} a^{14} - \frac{15567}{120764} a^{13} + \frac{33321}{241528} a^{12} - \frac{13869}{120764} a^{11} + \frac{36411}{241528} a^{10} + \frac{10575}{60382} a^{9} - \frac{49663}{241528} a^{8} - \frac{3456}{30191} a^{7} + \frac{117255}{241528} a^{6} + \frac{17711}{60382} a^{5} + \frac{13647}{241528} a^{4} + \frac{6285}{17252} a^{3} - \frac{13848}{30191} a^{2} + \frac{1485}{30191} a - \frac{11489}{30191}$, $\frac{1}{59322183883170821401620812250672715544} a^{17} - \frac{45861278977973770781267003447755}{59322183883170821401620812250672715544} a^{16} + \frac{7529737476922856543827650577915793}{59322183883170821401620812250672715544} a^{15} - \frac{2757739597217417990070495386265116291}{59322183883170821401620812250672715544} a^{14} + \frac{473155144427644624593445355512890365}{8474597697595831628802973178667530792} a^{13} + \frac{13313425646507321953844490955961960353}{59322183883170821401620812250672715544} a^{12} + \frac{13041104428993592149522515511737339009}{59322183883170821401620812250672715544} a^{11} + \frac{11710322450696527155174439990434325381}{59322183883170821401620812250672715544} a^{10} - \frac{8239916537733969170282424008819631019}{59322183883170821401620812250672715544} a^{9} - \frac{1518369789694387403049864389637357647}{8474597697595831628802973178667530792} a^{8} + \frac{8854357571468703871191598041797287459}{59322183883170821401620812250672715544} a^{7} + \frac{25654267330314544434488331828177502229}{59322183883170821401620812250672715544} a^{6} + \frac{10073194500207221543459249315885231147}{59322183883170821401620812250672715544} a^{5} + \frac{15908911535454245927912646413434250895}{59322183883170821401620812250672715544} a^{4} + \frac{730684987184321931006625813371779103}{4237298848797915814401486589333765396} a^{3} - \frac{14095319231543686118035296045630694681}{29661091941585410700810406125336357772} a^{2} + \frac{2469378264440916658632827629936098377}{7415272985396352675202601531334089443} a + \frac{403039995206634621701866301847970995}{7415272985396352675202601531334089443}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3170947.06149 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-247}) \), 3.1.247.1 x3, 3.3.361.1, 6.0.15069223.1, 6.0.5439989503.2 x2, 6.0.5439989503.1, 9.3.1963836210583.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.5439989503.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | 19.6.5.2 | $x^{6} - 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.2 | $x^{6} - 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.2 | $x^{6} - 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |