Normalized defining polynomial
\( x^{18} - 2 x^{17} + 92 x^{16} - 186 x^{15} + 4421 x^{14} - 7220 x^{13} + 141003 x^{12} - 156556 x^{11} + 3197563 x^{10} - 1924606 x^{9} + 52668918 x^{8} - 9253226 x^{7} + 622617494 x^{6} + 75541038 x^{5} + 5024127315 x^{4} + 1294777734 x^{3} + 24679661181 x^{2} + 5368141552 x + 54985356817 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1603371662107021018978486840742329188352=-\,2^{24}\cdot 13^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $150.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{46} a^{16} + \frac{1}{46} a^{15} + \frac{5}{46} a^{14} - \frac{4}{23} a^{13} - \frac{9}{46} a^{12} + \frac{5}{46} a^{11} + \frac{5}{23} a^{10} - \frac{1}{46} a^{9} - \frac{9}{23} a^{8} - \frac{11}{23} a^{7} - \frac{11}{46} a^{6} - \frac{6}{23} a^{5} + \frac{7}{46} a^{4} - \frac{2}{23} a^{3} - \frac{10}{23} a^{2} - \frac{10}{23} a + \frac{15}{46}$, $\frac{1}{4740646267467658011062617208121341612208543712126035731802886} a^{17} - \frac{15532932986738359793215913437594970970606669377432723486124}{2370323133733829005531308604060670806104271856063017865901443} a^{16} + \frac{100938350212584163332838183613426775095912625990621099390599}{2370323133733829005531308604060670806104271856063017865901443} a^{15} - \frac{424443804700432495311956859179585518305120391149135510884962}{2370323133733829005531308604060670806104271856063017865901443} a^{14} - \frac{390697756110481611597575310890037689157773024315902395014870}{2370323133733829005531308604060670806104271856063017865901443} a^{13} - \frac{176541682169448505522121785438061421896614771283997412769957}{4740646267467658011062617208121341612208543712126035731802886} a^{12} - \frac{152987657682771551636182691835662747126219830423202384837317}{2370323133733829005531308604060670806104271856063017865901443} a^{11} + \frac{32700015458690601824666271603099562316307817981246921545232}{2370323133733829005531308604060670806104271856063017865901443} a^{10} + \frac{297372041651776717262848522433755597107422342422970541847111}{2370323133733829005531308604060670806104271856063017865901443} a^{9} - \frac{518115319368477844562656360226610772166455053601161805570000}{2370323133733829005531308604060670806104271856063017865901443} a^{8} - \frac{1767630109751137477019383911316550956880879961139852632251361}{4740646267467658011062617208121341612208543712126035731802886} a^{7} - \frac{1464767365547544963418183914624058193586106129120394196672291}{4740646267467658011062617208121341612208543712126035731802886} a^{6} + \frac{6676158917350248789686069956973741550616050833007113841449}{103057527553644739370926461046116122004533558959261646343541} a^{5} + \frac{1062376021621825827049641356746092790927923184613785821232235}{4740646267467658011062617208121341612208543712126035731802886} a^{4} + \frac{144973462769040554830372217923913682313345867390270232338297}{2370323133733829005531308604060670806104271856063017865901443} a^{3} - \frac{1714747878335859578800304553877459524230573547208304021054165}{4740646267467658011062617208121341612208543712126035731802886} a^{2} + \frac{752084277059650823249998231319742671677583902237225513538025}{4740646267467658011062617208121341612208543712126035731802886} a - \frac{1155808407107717198140418369352860408612685491477150069352486}{2370323133733829005531308604060670806104271856063017865901443}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{196664}$, which has order $1573312$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-13}) \), 3.3.1369.1, 3.3.148.1, 6.0.263522029888.2, 6.0.769969408.1, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 13.12.6.1 | $x^{12} + 338 x^{8} + 8788 x^{6} + 28561 x^{4} + 19307236$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |