Normalized defining polynomial
\( x^{18} + 252 x^{16} + 26460 x^{14} + 1498224 x^{12} + 49441392 x^{10} + 958402368 x^{8} + 10435936896 x^{6} + 56923292160 x^{4} + 119538913536 x^{2} + 61983140352 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-16001058221486883031447445258662576128=-\,2^{27}\cdot 3^{45}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $116.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1512=2^{3}\cdot 3^{3}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1512}(1,·)$, $\chi_{1512}(1091,·)$, $\chi_{1512}(1345,·)$, $\chi_{1512}(841,·)$, $\chi_{1512}(587,·)$, $\chi_{1512}(337,·)$, $\chi_{1512}(83,·)$, $\chi_{1512}(755,·)$, $\chi_{1512}(1177,·)$, $\chi_{1512}(923,·)$, $\chi_{1512}(673,·)$, $\chi_{1512}(419,·)$, $\chi_{1512}(169,·)$, $\chi_{1512}(1259,·)$, $\chi_{1512}(1009,·)$, $\chi_{1512}(1427,·)$, $\chi_{1512}(505,·)$, $\chi_{1512}(251,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{14} a^{2}$, $\frac{1}{14} a^{3}$, $\frac{1}{196} a^{4}$, $\frac{1}{196} a^{5}$, $\frac{1}{2744} a^{6}$, $\frac{1}{2744} a^{7}$, $\frac{1}{38416} a^{8}$, $\frac{1}{38416} a^{9}$, $\frac{1}{537824} a^{10}$, $\frac{1}{537824} a^{11}$, $\frac{1}{7529536} a^{12}$, $\frac{1}{7529536} a^{13}$, $\frac{1}{105413504} a^{14}$, $\frac{1}{105413504} a^{15}$, $\frac{1}{1475789056} a^{16}$, $\frac{1}{1475789056} a^{17}$
Class group and class number
$C_{2}\times C_{1472822}$, which has order $2945644$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.03294431194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-42}) \), \(\Q(\zeta_{9})^+\), 6.0.3456649728.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | R | $18$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||