Normalized defining polynomial
\( x^{18} - 9 x^{17} + 48 x^{16} - 156 x^{15} + 2478 x^{14} - 25134 x^{13} + 162220 x^{12} - 616548 x^{11} + 1597149 x^{10} - 2510485 x^{9} + 2463540 x^{8} - 753984 x^{7} + 1476580 x^{6} - 2969220 x^{5} + 2376000 x^{4} + 8830864 x^{3} - 3165888 x^{2} - 7825920 x + 4077568 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1598763077775622674562101105291264000000=-\,2^{18}\cdot 3^{27}\cdot 5^{6}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $150.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{16} a^{5} + \frac{1}{16} a^{4} + \frac{1}{4} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{9} + \frac{1}{16} a^{7} + \frac{3}{32} a^{6} - \frac{3}{32} a^{5} - \frac{7}{16} a^{3} + \frac{3}{8} a^{2}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{9} - \frac{1}{16} a^{8} - \frac{3}{32} a^{7} + \frac{5}{32} a^{5} - \frac{1}{16} a^{4} - \frac{1}{16} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{544} a^{12} - \frac{3}{272} a^{11} + \frac{3}{272} a^{10} + \frac{7}{544} a^{9} - \frac{1}{544} a^{8} - \frac{1}{68} a^{7} + \frac{23}{272} a^{6} + \frac{89}{544} a^{5} - \frac{33}{136} a^{4} + \frac{107}{272} a^{3} + \frac{7}{17} a^{2} - \frac{27}{68} a + \frac{4}{17}$, $\frac{1}{1088} a^{13} - \frac{13}{1088} a^{11} - \frac{1}{136} a^{10} + \frac{7}{1088} a^{9} + \frac{5}{272} a^{8} - \frac{19}{1088} a^{7} + \frac{19}{272} a^{6} - \frac{27}{272} a^{5} + \frac{1}{8} a^{4} - \frac{99}{272} a^{3} + \frac{7}{17} a^{2} - \frac{5}{68} a - \frac{5}{17}$, $\frac{1}{1088} a^{14} - \frac{1}{1088} a^{12} - \frac{3}{272} a^{11} + \frac{11}{1088} a^{10} - \frac{1}{34} a^{9} - \frac{31}{1088} a^{8} - \frac{11}{136} a^{7} - \frac{1}{34} a^{6} + \frac{63}{272} a^{5} - \frac{19}{272} a^{4} - \frac{31}{136} a^{3} + \frac{5}{34} a^{2} + \frac{11}{34} a + \frac{7}{17}$, $\frac{1}{11968} a^{15} - \frac{1}{5984} a^{14} + \frac{3}{11968} a^{13} + \frac{127}{11968} a^{11} + \frac{21}{5984} a^{10} + \frac{199}{11968} a^{9} + \frac{65}{1496} a^{8} - \frac{129}{1496} a^{7} - \frac{257}{2992} a^{6} + \frac{1129}{5984} a^{5} + \frac{207}{2992} a^{4} + \frac{643}{2992} a^{3} - \frac{257}{1496} a^{2} + \frac{21}{187} a + \frac{8}{17}$, $\frac{1}{526592} a^{16} + \frac{7}{263296} a^{15} + \frac{13}{263296} a^{14} - \frac{9}{263296} a^{13} + \frac{95}{131648} a^{12} - \frac{1471}{263296} a^{11} + \frac{2487}{263296} a^{10} + \frac{349}{15488} a^{9} - \frac{14745}{526592} a^{8} + \frac{29}{4114} a^{7} - \frac{345}{5984} a^{6} + \frac{5153}{65824} a^{5} - \frac{1457}{131648} a^{4} + \frac{271}{968} a^{3} + \frac{9831}{32912} a^{2} - \frac{2755}{8228} a - \frac{27}{187}$, $\frac{1}{3543856194403283924621598778198270173542912} a^{17} - \frac{1495442561160229114191630876168891261}{1771928097201641962310799389099135086771456} a^{16} + \frac{42558903755453454271741617775872562537}{1771928097201641962310799389099135086771456} a^{15} - \frac{398297744509610120914236755651173967307}{1771928097201641962310799389099135086771456} a^{14} + \frac{172018007646655284785816500457085029905}{885964048600820981155399694549567543385728} a^{13} - \frac{117439816633884807848659447576223199345}{1771928097201641962310799389099135086771456} a^{12} - \frac{23606969092062876099191504817809145743521}{1771928097201641962310799389099135086771456} a^{11} - \frac{23861175910156038182223367916349587861329}{1771928097201641962310799389099135086771456} a^{10} - \frac{691206365069140197920171278154760989475}{25495368305059596580011502001426404126208} a^{9} + \frac{30395689094405001739328538228036921562235}{885964048600820981155399694549567543385728} a^{8} + \frac{623177687899078420268826845574551176877}{13028883067659132075814701390434816814496} a^{7} + \frac{135391001865502477335746619731415655119}{26057766135318264151629402780869633628992} a^{6} + \frac{209176021389351387064185481499608110240075}{885964048600820981155399694549567543385728} a^{5} - \frac{1797625443852307093532204734864599561417}{221491012150205245288849923637391885846432} a^{4} - \frac{61180419787911608998823814036678534817125}{221491012150205245288849923637391885846432} a^{3} + \frac{26311085791973467760597113740242148410099}{55372753037551311322212480909347971461608} a^{2} - \frac{8861053442693424001137294729260826364285}{27686376518775655661106240454673985730804} a - \frac{33216394464501714493257843817236260103}{629235829972173992297869101242590584791}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{391092}$, which has order $3128736$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1768168461.4286366 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.3.13689.1, 3.3.547560.1, 6.0.7308160119.1, 6.0.11693056190400.3, 9.9.164170508913216000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13 | Data not computed | ||||||