Normalized defining polynomial
\( x^{18} - 3 x^{17} + 72 x^{16} - 208 x^{15} + 2574 x^{14} - 7524 x^{13} + 58932 x^{12} - 170670 x^{11} + 946242 x^{10} - 2591186 x^{9} + 10996740 x^{8} - 25819998 x^{7} + 87289860 x^{6} - 156514464 x^{5} + 432944661 x^{4} - 534000599 x^{3} + 1263575190 x^{2} - 999364212 x + 2115047096 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-159008743546498260206901265688807751=-\,3^{24}\cdot 7^{15}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1071=3^{2}\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1071}(256,·)$, $\chi_{1071}(1,·)$, $\chi_{1071}(358,·)$, $\chi_{1071}(577,·)$, $\chi_{1071}(970,·)$, $\chi_{1071}(715,·)$, $\chi_{1071}(205,·)$, $\chi_{1071}(271,·)$, $\chi_{1071}(919,·)$, $\chi_{1071}(985,·)$, $\chi_{1071}(475,·)$, $\chi_{1071}(220,·)$, $\chi_{1071}(832,·)$, $\chi_{1071}(613,·)$, $\chi_{1071}(934,·)$, $\chi_{1071}(562,·)$, $\chi_{1071}(628,·)$, $\chi_{1071}(118,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{362} a^{12} + \frac{67}{362} a^{11} + \frac{12}{181} a^{10} + \frac{81}{362} a^{9} - \frac{42}{181} a^{8} - \frac{79}{181} a^{7} + \frac{41}{181} a^{6} - \frac{39}{362} a^{5} + \frac{7}{362} a^{4} + \frac{4}{181} a^{3} + \frac{69}{362} a^{2} + \frac{1}{181} a - \frac{69}{181}$, $\frac{1}{362} a^{13} + \frac{30}{181} a^{11} - \frac{79}{362} a^{10} - \frac{81}{362} a^{9} + \frac{20}{181} a^{8} + \frac{85}{181} a^{7} - \frac{103}{362} a^{6} + \frac{43}{181} a^{5} + \frac{41}{181} a^{4} - \frac{105}{362} a^{3} + \frac{85}{362} a^{2} + \frac{45}{181} a - \frac{83}{181}$, $\frac{1}{362} a^{14} + \frac{32}{181} a^{11} - \frac{73}{362} a^{10} + \frac{67}{362} a^{9} - \frac{39}{362} a^{8} - \frac{35}{362} a^{7} - \frac{64}{181} a^{6} - \frac{56}{181} a^{5} + \frac{9}{181} a^{4} - \frac{33}{362} a^{3} + \frac{113}{362} a^{2} - \frac{105}{362} a - \frac{23}{181}$, $\frac{1}{724} a^{15} + \frac{41}{181} a^{11} + \frac{40}{181} a^{10} + \frac{13}{362} a^{9} + \frac{23}{181} a^{8} + \frac{105}{362} a^{7} - \frac{73}{181} a^{6} - \frac{5}{181} a^{5} - \frac{75}{181} a^{4} + \frac{36}{181} a^{3} - \frac{179}{362} a^{2} + \frac{7}{724} a - \frac{109}{362}$, $\frac{1}{1448} a^{16} - \frac{1}{1448} a^{15} - \frac{1}{724} a^{12} + \frac{12}{181} a^{11} - \frac{17}{181} a^{10} + \frac{7}{724} a^{9} + \frac{153}{724} a^{8} + \frac{193}{724} a^{7} + \frac{52}{181} a^{6} + \frac{201}{724} a^{5} + \frac{46}{181} a^{4} - \frac{5}{362} a^{3} - \frac{591}{1448} a^{2} + \frac{167}{1448} a + \frac{341}{724}$, $\frac{1}{3613798383603951106090191271374998685435838560177526635968} a^{17} + \frac{80921885912643986650694837841876801135460437744345235}{3613798383603951106090191271374998685435838560177526635968} a^{16} + \frac{526498013654398211106253359970370410526961068919440133}{1806899191801975553045095635687499342717919280088763317984} a^{15} - \frac{411485169363401067237140437884857991597870957221938541}{903449595900987776522547817843749671358959640044381658992} a^{14} - \frac{935569246780975466942209715660778722367638853666737397}{1806899191801975553045095635687499342717919280088763317984} a^{13} - \frac{17058621082084308872082958184235484854055823181397983}{56465599743811736032659238615234354459934977502773853687} a^{12} - \frac{205472366517912633435717318369209511527855049784283058147}{903449595900987776522547817843749671358959640044381658992} a^{11} + \frac{108333299493923074239948162757319843832731454332818201685}{1806899191801975553045095635687499342717919280088763317984} a^{10} + \frac{156402388448638864313474509751002248561209831147480144127}{1806899191801975553045095635687499342717919280088763317984} a^{9} - \frac{9386412818210302257208901248810961209602925936507635295}{1806899191801975553045095635687499342717919280088763317984} a^{8} - \frac{89542557964341351746602846675343887403205503173452521881}{225862398975246944130636954460937417839739910011095414748} a^{7} - \frac{481581140164379007130802515366309166845619113259145107935}{1806899191801975553045095635687499342717919280088763317984} a^{6} + \frac{35129155618976270349562437310427013379274960198543008715}{225862398975246944130636954460937417839739910011095414748} a^{5} + \frac{375273258650450246576266421471466902946649777689230356}{56465599743811736032659238615234354459934977502773853687} a^{4} - \frac{1792690523411715065180157803688351532592787051286571157131}{3613798383603951106090191271374998685435838560177526635968} a^{3} - \frac{876494928393415515262149822901878087302731088988716810793}{3613798383603951106090191271374998685435838560177526635968} a^{2} + \frac{71423280615921263985295288421553468331272118598191244155}{225862398975246944130636954460937417839739910011095414748} a - \frac{240403527554019729011108107447632745815756609226077352549}{903449595900987776522547817843749671358959640044381658992}$
Class group and class number
$C_{2}\times C_{18}\times C_{8190}$, which has order $294840$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-119}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.1, 3.3.3969.2, \(\Q(\zeta_{7})^+\), 6.0.11056328199.5, 6.0.541760081751.3, 6.0.541760081751.4, 6.0.82572791.1, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $17$ | 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |