Normalized defining polynomial
\( x^{18} - 7 x^{17} + 201 x^{16} - 1130 x^{15} + 18375 x^{14} - 87177 x^{13} + 1030359 x^{12} - 4210681 x^{11} + 39236496 x^{10} - 137757260 x^{9} + 1044507053 x^{8} - 3077994253 x^{7} + 19191974213 x^{6} - 45165879675 x^{5} + 231046792381 x^{4} - 392285922997 x^{3} + 1622269413029 x^{2} - 1522944032030 x + 4931895139903 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15796345197168827671044286969235239338717184=-\,2^{12}\cdot 7^{9}\cdot 13^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $251.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{17} - \frac{120195591851612495431716636183222841041894641272599112449274080029172350}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{16} - \frac{193574962717704346074027696060095379090627521735344163045303789009789908}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{15} - \frac{120790758886008308533853382924760385830634961771319528318075930342583410}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{14} + \frac{92858687211173248728084109203368333474618783599933181994156603402116540}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{13} + \frac{141491408105985621839617075141391079051121575950477133946876728104610961}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{12} - \frac{51933038720097197098882265888487240915270790135891244778042134924684944}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{11} + \frac{149340978688954165747292414588868385369064065598964493867910342839974799}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{10} + \frac{12024278479947990165013662299863978280029327243176194528130878096252954}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{9} - \frac{172264925983845228344161256744689853912853658613304059271194442013248766}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{8} + \frac{71564493297597248315419963687310091153009419608339261317085116878880334}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{7} - \frac{67092662050508303302464473207753240028702647638712854459400675484491630}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{6} + \frac{164792821555735341838314687850871111443014698817599405293993188897875858}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{5} - \frac{39426934775170913555687458308774532016937423782736279934654654573735550}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{4} + \frac{77460759169155016060962658665292397163682401800308350493214313516004264}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{3} + \frac{55904014149048683583841491376539588367815335700483477090228726713365590}{388502166248810523783828249243144205826625118021624891802283123998266879} a^{2} - \frac{65368181994673385382929606335043302577756518661277563667531093106538550}{388502166248810523783828249243144205826625118021624891802283123998266879} a + \frac{33251568463155613138154157343576115966555027701395780372604050203904139}{388502166248810523783828249243144205826625118021624891802283123998266879}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{28713636}$, which has order $229709088$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-91}) \), 3.3.1369.1, 3.3.148.1, 6.0.16506219184.7, 6.0.1412313378931.4, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 13.12.6.1 | $x^{12} + 338 x^{8} + 8788 x^{6} + 28561 x^{4} + 19307236$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |