Normalized defining polynomial
\( x^{18} - 9 x^{16} + 36 x^{14} - 69 x^{12} + 72 x^{10} - 9 x^{8} - 165 x^{6} + 108 x^{4} + 144 x^{2} + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-157385632301186150301696=-\,2^{20}\cdot 3^{36}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{26} a^{12} - \frac{3}{13} a^{10} + \frac{1}{26} a^{8} + \frac{3}{13} a^{6} - \frac{7}{26} a^{4} - \frac{3}{13} a^{2} - \frac{5}{13}$, $\frac{1}{26} a^{13} - \frac{3}{13} a^{11} + \frac{1}{26} a^{9} + \frac{3}{13} a^{7} - \frac{7}{26} a^{5} - \frac{3}{13} a^{3} - \frac{5}{13} a$, $\frac{1}{52} a^{14} - \frac{1}{52} a^{12} + \frac{5}{26} a^{10} + \frac{11}{52} a^{8} + \frac{5}{26} a^{6} + \frac{11}{52} a^{4} + \frac{25}{52} a^{2} - \frac{6}{13}$, $\frac{1}{208} a^{15} - \frac{1}{104} a^{14} - \frac{1}{208} a^{13} + \frac{1}{104} a^{12} + \frac{9}{52} a^{11} + \frac{2}{13} a^{10} + \frac{11}{208} a^{9} - \frac{11}{104} a^{8} - \frac{1}{13} a^{7} + \frac{2}{13} a^{6} - \frac{41}{208} a^{5} - \frac{11}{104} a^{4} - \frac{53}{208} a^{3} - \frac{51}{104} a^{2} + \frac{7}{52} a - \frac{7}{26}$, $\frac{1}{792896} a^{16} + \frac{1219}{792896} a^{14} - \frac{1}{52} a^{13} + \frac{333}{99112} a^{12} - \frac{7}{52} a^{11} - \frac{113733}{792896} a^{10} + \frac{3}{13} a^{9} - \frac{13341}{198224} a^{8} + \frac{7}{52} a^{7} - \frac{25593}{792896} a^{6} + \frac{5}{13} a^{5} + \frac{73999}{792896} a^{4} - \frac{7}{52} a^{3} + \frac{11211}{24778} a^{2} + \frac{23}{52} a + \frac{21115}{49556}$, $\frac{1}{1585792} a^{17} + \frac{1219}{1585792} a^{15} - \frac{1}{104} a^{14} + \frac{333}{198224} a^{13} + \frac{1}{104} a^{12} - \frac{113733}{1585792} a^{11} + \frac{2}{13} a^{10} - \frac{13341}{396448} a^{9} - \frac{11}{104} a^{8} + \frac{370855}{1585792} a^{7} + \frac{2}{13} a^{6} - \frac{322449}{1585792} a^{5} + \frac{41}{104} a^{4} - \frac{589}{24778} a^{3} + \frac{1}{104} a^{2} + \frac{21115}{99112} a + \frac{3}{13}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 64410.9764963 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_4$ (as 18T66):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_2\times C_3:S_4$ |
| Character table for $C_2\times C_3:S_4$ |
Intermediate fields
| 3.1.972.2, 3.1.108.1, 3.1.972.1, 3.1.243.1, 6.0.944784.1, 9.1.24794911296.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.16.2 | $x^{12} - 108 x^{10} - 171 x^{8} + 344 x^{6} - 61 x^{4} + 468 x^{2} + 359$ | $6$ | $2$ | $16$ | $(C_6\times C_2):C_2$ | $[2, 2]_{3}^{2}$ | |
| 3 | Data not computed | ||||||