Normalized defining polynomial
\( x^{18} - 7 x^{17} + 22 x^{16} + 72 x^{15} + 648 x^{14} - 9060 x^{13} + 72318 x^{12} - 272982 x^{11} + 1442715 x^{10} - 7028429 x^{9} + 45186124 x^{8} - 191602578 x^{7} + 838542252 x^{6} - 2810738664 x^{5} + 10903299792 x^{4} - 31071279168 x^{3} + 87450314880 x^{2} - 137349245952 x + 194888648704 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15537225845019417529672325781592151434950300401664=-\,2^{18}\cdot 3^{9}\cdot 13^{9}\cdot 127^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $540.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{1}{16} a^{7} + \frac{1}{16} a^{5} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{12} - \frac{1}{32} a^{11} - \frac{1}{64} a^{10} - \frac{3}{64} a^{8} + \frac{3}{32} a^{7} + \frac{5}{64} a^{6} - \frac{3}{16} a^{5} + \frac{3}{32} a^{4} - \frac{3}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{11} - \frac{1}{32} a^{10} + \frac{1}{64} a^{9} + \frac{5}{64} a^{7} - \frac{1}{32} a^{6} + \frac{5}{32} a^{5} - \frac{3}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{14} - \frac{1}{128} a^{13} - \frac{1}{128} a^{12} + \frac{3}{128} a^{11} + \frac{3}{128} a^{10} + \frac{3}{128} a^{9} + \frac{5}{128} a^{8} - \frac{3}{128} a^{7} - \frac{1}{32} a^{6} + \frac{11}{64} a^{5} + \frac{3}{32} a^{4} + \frac{5}{16} a^{3} + \frac{3}{8} a^{2}$, $\frac{1}{128} a^{15} - \frac{1}{32} a^{10} - \frac{3}{64} a^{9} - \frac{1}{16} a^{8} - \frac{1}{128} a^{7} + \frac{3}{32} a^{6} - \frac{1}{64} a^{5} - \frac{1}{4} a^{4} - \frac{7}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{1024} a^{16} - \frac{1}{256} a^{15} - \frac{1}{512} a^{14} + \frac{1}{512} a^{13} + \frac{3}{512} a^{12} - \frac{5}{512} a^{11} - \frac{1}{128} a^{10} - \frac{11}{512} a^{9} - \frac{39}{1024} a^{8} + \frac{35}{512} a^{7} - \frac{55}{512} a^{6} + \frac{27}{256} a^{5} - \frac{29}{128} a^{4} + \frac{15}{64} a^{3} + \frac{3}{8} a^{2} + \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{1709112062982812366249372969582272640277606836873682359026688} a^{17} + \frac{770552403282925936559547049636538176170427328931388409689}{1709112062982812366249372969582272640277606836873682359026688} a^{16} - \frac{1460199111001407113038787453166316253081189500491337716211}{854556031491406183124686484791136320138803418436841179513344} a^{15} + \frac{16852141553545030680312338127385344998398882675124487681}{213639007872851545781171621197784080034700854609210294878336} a^{14} + \frac{221836066540652413472375145517133944143442575834005704453}{106819503936425772890585810598892040017350427304605147439168} a^{13} + \frac{1836523671695187478437999833734937804558623794476826594297}{427278015745703091562343242395568160069401709218420589756672} a^{12} - \frac{4410884193095006577930705842978230320361612569845173071325}{854556031491406183124686484791136320138803418436841179513344} a^{11} - \frac{8345098922855261713440202998758227026292231982903721420559}{854556031491406183124686484791136320138803418436841179513344} a^{10} - \frac{6450108785453428477584565329294360584941397660122755116533}{1709112062982812366249372969582272640277606836873682359026688} a^{9} + \frac{103603330448626354594377537864747229270191141106250115503067}{1709112062982812366249372969582272640277606836873682359026688} a^{8} - \frac{270878297054376449702849984484878893239090535205610648109}{26704875984106443222646452649723010004337606826151286859792} a^{7} + \frac{78304582053988690271156189567126154185462716165858918395275}{854556031491406183124686484791136320138803418436841179513344} a^{6} - \frac{21540392109182817748480075318355359964238415532839148336331}{427278015745703091562343242395568160069401709218420589756672} a^{5} + \frac{10748248074723246773896519778575926028103255454609272627357}{213639007872851545781171621197784080034700854609210294878336} a^{4} - \frac{41610996991845458042995572161426501260622801792327170637389}{106819503936425772890585810598892040017350427304605147439168} a^{3} - \frac{406515034582960216281630581250755318989172065549171833443}{6676218996026610805661613162430752501084401706537821714948} a^{2} - \frac{5512699900849386119718079257931556264137401431832136095535}{13352437992053221611323226324861505002168803413075643429896} a - \frac{624578561661004319056272676915587040410413677628194332693}{3338109498013305402830806581215376250542200853268910857474}$
Class group and class number
$C_{2}\times C_{84}\times C_{357158172}$, which has order $60002572896$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5546046730.2947445 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.3.16129.1, 3.3.1016.1, 6.0.61232393664.2, 6.0.15431519959479.2, 9.9.272832440404737536.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $13$ | 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 13.12.6.1 | $x^{12} + 338 x^{8} + 8788 x^{6} + 28561 x^{4} + 19307236$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $127$ | 127.3.2.1 | $x^{3} - 127$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 127.3.2.1 | $x^{3} - 127$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 127.6.5.1 | $x^{6} - 127$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 127.6.5.1 | $x^{6} - 127$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |