Normalized defining polynomial
\( x^{18} - 9 x^{17} + 55 x^{16} - 236 x^{15} + 748 x^{14} - 1820 x^{13} + 3487 x^{12} - 5348 x^{11} + 7548 x^{10} - 11263 x^{9} + 19479 x^{8} - 32168 x^{7} + 41267 x^{6} - 38174 x^{5} + 31004 x^{4} - 23408 x^{3} + 58816 x^{2} - 49979 x + 13121 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15522256482134329706192486171=-\,11^{9}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{1023} a^{14} - \frac{7}{1023} a^{13} + \frac{100}{1023} a^{12} - \frac{509}{1023} a^{11} + \frac{35}{1023} a^{10} + \frac{232}{1023} a^{9} + \frac{1}{11} a^{8} + \frac{28}{341} a^{7} + \frac{178}{1023} a^{6} - \frac{386}{1023} a^{5} + \frac{48}{341} a^{4} - \frac{101}{1023} a^{3} + \frac{499}{1023} a^{2} - \frac{11}{31} a - \frac{395}{1023}$, $\frac{1}{1023} a^{15} + \frac{17}{341} a^{13} - \frac{50}{341} a^{12} - \frac{153}{341} a^{11} - \frac{205}{1023} a^{10} - \frac{329}{1023} a^{9} + \frac{394}{1023} a^{8} + \frac{28}{341} a^{7} - \frac{163}{1023} a^{6} - \frac{57}{341} a^{5} - \frac{116}{1023} a^{4} - \frac{208}{1023} a^{3} + \frac{61}{1023} a^{2} - \frac{208}{1023} a - \frac{126}{341}$, $\frac{1}{1855062015262467} a^{16} - \frac{8}{1855062015262467} a^{15} - \frac{15241629005}{168642001387497} a^{14} + \frac{391201811175}{618354005087489} a^{13} + \frac{37921043899120}{1855062015262467} a^{12} - \frac{242783134030909}{1855062015262467} a^{11} + \frac{189281893383923}{1855062015262467} a^{10} - \frac{182662830244039}{618354005087489} a^{9} + \frac{272079121154422}{1855062015262467} a^{8} - \frac{172983393140717}{618354005087489} a^{7} - \frac{84904965618124}{1855062015262467} a^{6} - \frac{848660616275390}{1855062015262467} a^{5} + \frac{684225955065}{19946903389919} a^{4} + \frac{416968083391322}{1855062015262467} a^{3} + \frac{773686179101299}{1855062015262467} a^{2} + \frac{488712103813097}{1855062015262467} a - \frac{12862055384573}{618354005087489}$, $\frac{1}{866313961127572089} a^{17} + \frac{75}{288771320375857363} a^{16} - \frac{194196627259222}{866313961127572089} a^{15} + \frac{147071505363868}{866313961127572089} a^{14} - \frac{132076226688981958}{866313961127572089} a^{13} - \frac{88501452188247125}{866313961127572089} a^{12} - \frac{311280666755592775}{866313961127572089} a^{11} - \frac{28808861080134926}{288771320375857363} a^{10} + \frac{58451913520627839}{288771320375857363} a^{9} - \frac{197953850386729927}{866313961127572089} a^{8} + \frac{32609014194861406}{78755814647961099} a^{7} - \frac{71105596999020731}{288771320375857363} a^{6} + \frac{296512054261752029}{866313961127572089} a^{5} + \frac{119780079087924320}{288771320375857363} a^{4} + \frac{251313496613195548}{866313961127572089} a^{3} - \frac{119045348347566959}{288771320375857363} a^{2} - \frac{196158051495872410}{866313961127572089} a + \frac{43473985929344874}{288771320375857363}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2475749.23259 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.1.15059.1 x3, 3.3.1369.1, 6.0.2494508291.1, 6.0.2494508291.2, 6.0.1822139.1 x2, 9.3.3414981850379.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.1822139.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $37$ | 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |