Normalized defining polynomial
\( x^{18} + 9 x^{16} - 9 x^{15} + 36 x^{14} - 63 x^{13} + 109 x^{12} - 189 x^{11} + 252 x^{10} - 335 x^{9} + 378 x^{8} - 378 x^{7} + 334 x^{6} - 243 x^{5} + 147 x^{4} - 67 x^{3} + 21 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1548507685660102467=-\,3^{21}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $10.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{1153182335} a^{17} - \frac{394336921}{1153182335} a^{16} - \frac{85928896}{230636467} a^{15} - \frac{97238009}{1153182335} a^{14} - \frac{49031889}{230636467} a^{13} - \frac{138175543}{1153182335} a^{12} + \frac{462712092}{1153182335} a^{11} - \frac{279666761}{1153182335} a^{10} - \frac{280014797}{1153182335} a^{9} - \frac{524613583}{1153182335} a^{8} + \frac{63869246}{1153182335} a^{7} - \frac{17051817}{67834255} a^{6} - \frac{77106787}{1153182335} a^{5} - \frac{214113886}{1153182335} a^{4} + \frac{560320823}{1153182335} a^{3} - \frac{96385234}{230636467} a^{2} - \frac{142185499}{1153182335} a + \frac{564604746}{1153182335}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3077572}{11195945} a^{17} - \frac{313528}{11195945} a^{16} - \frac{5796705}{2239189} a^{15} + \frac{22523788}{11195945} a^{14} - \frac{24327282}{2239189} a^{13} + \frac{172258676}{11195945} a^{12} - \frac{359270994}{11195945} a^{11} + \frac{555197617}{11195945} a^{10} - \frac{776133451}{11195945} a^{9} + \frac{1033752351}{11195945} a^{8} - \frac{1120967627}{11195945} a^{7} + \frac{68522744}{658585} a^{6} - \frac{989519121}{11195945} a^{5} + \frac{715640877}{11195945} a^{4} - \frac{427450321}{11195945} a^{3} + \frac{36791096}{2239189} a^{2} - \frac{55256652}{11195945} a + \frac{15041843}{11195945} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 78.7017437829 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3.S_3^2$ (as 18T57):
| A solvable group of order 108 |
| The 11 conjugacy class representatives for $C_3.S_3^2$ |
| Character table for $C_3.S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.23.1, 6.0.14283.1, 9.1.239483061.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |