Normalized defining polynomial
\( x^{18} - 3 x^{17} + 3 x^{16} + 20 x^{15} - 48 x^{14} - 153 x^{13} + 869 x^{12} + 4968 x^{11} + 12933 x^{10} + 23132 x^{9} + 35334 x^{8} + 49026 x^{7} + 56811 x^{6} + 50841 x^{5} + 41094 x^{4} + 31743 x^{3} + 18630 x^{2} + 6858 x + 4509 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-154526555014637781065174195908608=-\,2^{12}\cdot 3^{18}\cdot 7^{15}\cdot 29^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{8} - \frac{1}{3} a^{5}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{9} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{4}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{18} a^{16} - \frac{1}{18} a^{15} - \frac{1}{18} a^{13} - \frac{1}{9} a^{12} + \frac{5}{18} a^{10} + \frac{2}{9} a^{9} + \frac{1}{3} a^{8} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{22724686322699784739360776096511644} a^{17} - \frac{311176159654020451050632089298009}{11362343161349892369680388048255822} a^{16} + \frac{256946578421500260289342351537075}{7574895440899928246453592032170548} a^{15} + \frac{2487324626379338256658265211710297}{22724686322699784739360776096511644} a^{14} - \frac{2742812225305872832496185919599655}{22724686322699784739360776096511644} a^{13} + \frac{75877575202431764454467938180082}{631241286741660687204466002680879} a^{12} + \frac{3463446914190096598347888821668025}{22724686322699784739360776096511644} a^{11} + \frac{8501112286706457277051745542012429}{22724686322699784739360776096511644} a^{10} + \frac{1022833424901260180455982658861}{1262482573483321374408932005361758} a^{9} - \frac{5415153902538730077787759151561393}{11362343161349892369680388048255822} a^{8} - \frac{2251613017427886769214451226999433}{5681171580674946184840194024127911} a^{7} - \frac{1476477101836514241056836537838467}{3787447720449964123226796016085274} a^{6} - \frac{86205001130600539317132448230327}{2524965146966642748817864010723516} a^{5} + \frac{397319810004741771256024750904941}{1262482573483321374408932005361758} a^{4} + \frac{34885533954073577461342146719876}{1893723860224982061613398008042637} a^{3} - \frac{1237160155340140557946961349012573}{2524965146966642748817864010723516} a^{2} + \frac{396734430757577172148625920473881}{2524965146966642748817864010723516} a + \frac{248269280274148984947820543336299}{2524965146966642748817864010723516}$
Class group and class number
$C_{2}\times C_{4}\times C_{48}$, which has order $384$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1152993.7459 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n766 are not computed |
| Character table for t18n766 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.13632439166829.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.12.12.6 | $x^{12} - 18 x^{10} + 11 x^{8} - 52 x^{6} - x^{4} + 6 x^{2} - 11$ | $2$ | $6$ | $12$ | 12T105 | $[2, 2, 2, 2]^{12}$ | |
| $3$ | 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ |
| 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ | |
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.6.5.2 | $x^{6} + 58$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |