Normalized defining polynomial
\( x^{18} - 11 x^{16} - 75 x^{15} + 321 x^{14} + 147 x^{13} + 641 x^{12} - 11589 x^{11} + 15447 x^{10} + 30186 x^{9} - 55196 x^{8} - 52869 x^{7} + 188785 x^{6} + 172251 x^{5} + 49959 x^{4} + 210708 x^{3} + 285795 x^{2} + 30537 x + 1161 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-154125661129436703526043328000000=-\,2^{12}\cdot 3^{9}\cdot 5^{6}\cdot 13^{10}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{12} - \frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{2}{9} a^{9} + \frac{1}{3} a^{8} + \frac{1}{9} a^{5} - \frac{1}{3} a^{4} + \frac{4}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{34371} a^{16} - \frac{493}{11457} a^{15} + \frac{1264}{34371} a^{14} + \frac{3892}{11457} a^{13} - \frac{926}{11457} a^{12} + \frac{655}{11457} a^{11} + \frac{1244}{34371} a^{10} + \frac{4481}{11457} a^{9} + \frac{4853}{11457} a^{8} - \frac{184}{3819} a^{7} + \frac{2539}{34371} a^{6} + \frac{199}{11457} a^{5} - \frac{6329}{34371} a^{4} + \frac{2195}{11457} a^{3} - \frac{1432}{11457} a^{2} + \frac{1310}{3819} a - \frac{443}{3819}$, $\frac{1}{74271410279686778625726529564409418516627556389} a^{17} - \frac{173528514515443599785545538662724063921281}{74271410279686778625726529564409418516627556389} a^{16} - \frac{3605504330228657708761074161933813517855921095}{74271410279686778625726529564409418516627556389} a^{15} + \frac{8327009892920240724177217408316928438687616016}{74271410279686778625726529564409418516627556389} a^{14} + \frac{56379789584422483877401228398623799475560943}{434335732629747243425301342481926424073845359} a^{13} + \frac{79648011026560085504342949294692927408172260}{634798378458861355775440423627430927492543217} a^{12} - \frac{34082435439770897723667246108241922566640714113}{74271410279686778625726529564409418516627556389} a^{11} + \frac{1953210101245988966404135936999587480788444842}{5713185406129752201978963812646878347432888953} a^{10} - \frac{2805035514952975842844823273049130143302108233}{8252378919965197625080725507156602057403061821} a^{9} + \frac{10356582862367719078980393982000858484178857119}{24757136759895592875242176521469806172209185463} a^{8} + \frac{26567537169562698990242316786060494076254034625}{74271410279686778625726529564409418516627556389} a^{7} - \frac{8666544543808528460729539111165850084679959026}{74271410279686778625726529564409418516627556389} a^{6} + \frac{4141404588626095746831079840211268935922924598}{74271410279686778625726529564409418516627556389} a^{5} - \frac{5532881843298569330842512827770727233713959938}{74271410279686778625726529564409418516627556389} a^{4} + \frac{780832903874905886730222524089098084013825566}{2750792973321732541693575169052200685801020607} a^{3} + \frac{1946607024561674448014121010063648618197247510}{24757136759895592875242176521469806172209185463} a^{2} + \frac{1439757439008139942623210015994297956981256904}{8252378919965197625080725507156602057403061821} a - \frac{1333890114895433328055480936995762064709819176}{8252378919965197625080725507156602057403061821}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{225870134970968454935051636}{2162915254159580529129852396249} a^{17} - \frac{7541670641543877254081904}{720971751386526843043284132083} a^{16} - \frac{828065039489618787578115514}{720971751386526843043284132083} a^{15} - \frac{5555717911027175180535250948}{720971751386526843043284132083} a^{14} + \frac{74151435637955055953987208520}{2162915254159580529129852396249} a^{13} + \frac{8568277340235851870479924991}{720971751386526843043284132083} a^{12} + \frac{140192991892965865228173653782}{2162915254159580529129852396249} a^{11} - \frac{873809216803819927729283219102}{720971751386526843043284132083} a^{10} + \frac{3736777842193481179988644136204}{2162915254159580529129852396249} a^{9} + \frac{2165522315529573061859647606695}{720971751386526843043284132083} a^{8} - \frac{13474389197839878758634537164092}{2162915254159580529129852396249} a^{7} - \frac{3243902532402500866976094027176}{720971751386526843043284132083} a^{6} + \frac{14378795291836331488648832424738}{720971751386526843043284132083} a^{5} + \frac{11229897221990829367184343345585}{720971751386526843043284132083} a^{4} + \frac{8687011358732154152369969950582}{2162915254159580529129852396249} a^{3} + \frac{16241055410062159964150738150082}{720971751386526843043284132083} a^{2} + \frac{19561212094396052456404847971206}{720971751386526843043284132083} a + \frac{1433259002026806861146308757962}{720971751386526843043284132083} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1503257555.4600825 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.780.1, 6.0.4385043.1, 6.0.1825200.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.5.6 | $x^{6} + 416$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $31$ | 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.6.4.2 | $x^{6} - 31 x^{3} + 11532$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 31.6.0.1 | $x^{6} - 2 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |