Normalized defining polynomial
\( x^{18} - 6 x^{17} + 129 x^{16} - 560 x^{15} + 6714 x^{14} - 20664 x^{13} + 184456 x^{12} - 363096 x^{11} + 3000297 x^{10} - 2959990 x^{9} + 33312717 x^{8} - 10998372 x^{7} + 286497301 x^{6} - 48374466 x^{5} + 1803174465 x^{4} - 405210528 x^{3} + 6188670615 x^{2} - 814254078 x + 10029275353 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1531201474666953640931762831258280303=-\,3^{27}\cdot 7^{12}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1827=3^{2}\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1827}(1,·)$, $\chi_{1827}(1219,·)$, $\chi_{1827}(260,·)$, $\chi_{1827}(1478,·)$, $\chi_{1827}(1304,·)$, $\chi_{1827}(1045,·)$, $\chi_{1827}(86,·)$, $\chi_{1827}(88,·)$, $\chi_{1827}(1306,·)$, $\chi_{1827}(347,·)$, $\chi_{1827}(1565,·)$, $\chi_{1827}(610,·)$, $\chi_{1827}(869,·)$, $\chi_{1827}(436,·)$, $\chi_{1827}(1654,·)$, $\chi_{1827}(695,·)$, $\chi_{1827}(697,·)$, $\chi_{1827}(956,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{16} a^{9} + \frac{1}{16} a^{8} - \frac{1}{4} a^{7} + \frac{1}{16} a^{5} + \frac{3}{16} a^{4} - \frac{7}{16} a^{3} - \frac{1}{16} a^{2} + \frac{1}{16} a - \frac{3}{16}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{4} a^{7} + \frac{1}{16} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a + \frac{7}{16}$, $\frac{1}{16} a^{11} + \frac{1}{16} a^{8} - \frac{3}{16} a^{7} + \frac{1}{8} a^{6} + \frac{3}{16} a^{5} - \frac{3}{16} a^{4} + \frac{7}{16} a^{3} + \frac{7}{16} a^{2} - \frac{7}{16}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} - \frac{1}{8} a^{8} - \frac{1}{16} a^{7} + \frac{1}{16} a^{6} + \frac{1}{32} a^{5} + \frac{7}{32} a^{4} + \frac{15}{32} a^{3} - \frac{1}{8} a^{2} - \frac{13}{32} a + \frac{7}{32}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{11} - \frac{1}{32} a^{10} + \frac{1}{16} a^{8} + \frac{1}{16} a^{7} + \frac{1}{32} a^{6} - \frac{5}{32} a^{5} - \frac{5}{32} a^{4} - \frac{1}{2} a^{3} - \frac{1}{32} a^{2} - \frac{5}{32} a + \frac{1}{8}$, $\frac{1}{26464} a^{14} + \frac{139}{13232} a^{13} + \frac{259}{26464} a^{12} - \frac{749}{26464} a^{11} + \frac{167}{13232} a^{10} + \frac{71}{3308} a^{9} - \frac{1091}{13232} a^{8} - \frac{1217}{26464} a^{7} + \frac{2037}{26464} a^{6} - \frac{1287}{26464} a^{5} + \frac{303}{13232} a^{4} - \frac{1093}{26464} a^{3} + \frac{3825}{26464} a^{2} + \frac{135}{6616} a - \frac{285}{3308}$, $\frac{1}{26464} a^{15} - \frac{57}{13232} a^{13} + \frac{25}{26464} a^{12} - \frac{675}{26464} a^{11} - \frac{487}{26464} a^{10} + \frac{11}{827} a^{9} - \frac{3293}{26464} a^{8} - \frac{2015}{26464} a^{7} + \frac{1115}{13232} a^{6} - \frac{4661}{26464} a^{5} - \frac{13}{13232} a^{4} + \frac{11613}{26464} a^{3} - \frac{3423}{26464} a^{2} - \frac{6021}{26464} a - \frac{3129}{13232}$, $\frac{1}{52928} a^{16} - \frac{67}{6616} a^{13} - \frac{47}{26464} a^{12} - \frac{173}{13232} a^{11} + \frac{193}{26464} a^{10} + \frac{17}{827} a^{9} + \frac{2299}{52928} a^{8} - \frac{2701}{13232} a^{7} + \frac{5855}{26464} a^{6} + \frac{529}{13232} a^{5} + \frac{2959}{52928} a^{4} + \frac{2521}{13232} a^{3} - \frac{419}{26464} a^{2} - \frac{391}{1654} a - \frac{19263}{52928}$, $\frac{1}{108809009162877462660216500013146207148225456066709893258368} a^{17} - \frac{173956497605488305581835106191578027628065108340196817}{108809009162877462660216500013146207148225456066709893258368} a^{16} + \frac{163302759913821915601477823657450052632039986515738657}{27202252290719365665054125003286551787056364016677473314592} a^{15} + \frac{9327734455970214501337815823308262580490625655512059}{13601126145359682832527062501643275893528182008338736657296} a^{14} - \frac{299459717398468805997772255382474939135439746869867594525}{54404504581438731330108250006573103574112728033354946629184} a^{13} + \frac{496067969870034190579536463602927248090351479097250164299}{54404504581438731330108250006573103574112728033354946629184} a^{12} - \frac{330596123139054241735655054448919769125947557688188410887}{54404504581438731330108250006573103574112728033354946629184} a^{11} - \frac{648500068156849113823816843803048508133840898825849180627}{54404504581438731330108250006573103574112728033354946629184} a^{10} - \frac{2906765199720049447244294799815163347373736997458623055021}{108809009162877462660216500013146207148225456066709893258368} a^{9} + \frac{4248766179002158530228681137557918287541085734821155094189}{108809009162877462660216500013146207148225456066709893258368} a^{8} - \frac{1824758370341167151188176644965068256644433745638187392939}{54404504581438731330108250006573103574112728033354946629184} a^{7} + \frac{10889149805208984639570499590344912596833804061598479987735}{54404504581438731330108250006573103574112728033354946629184} a^{6} - \frac{16538705417879514717314649771588716490638660066626686658921}{108809009162877462660216500013146207148225456066709893258368} a^{5} + \frac{1906356410272476542196892814197200652452449674006923558773}{108809009162877462660216500013146207148225456066709893258368} a^{4} - \frac{25329172883822757070652170794724697611693826543752253061729}{54404504581438731330108250006573103574112728033354946629184} a^{3} - \frac{19578307498106097212708205710669724993250697413536139883327}{54404504581438731330108250006573103574112728033354946629184} a^{2} + \frac{37647715507237930671343528362017946290380764000626356268817}{108809009162877462660216500013146207148225456066709893258368} a - \frac{39256826314490495753206918943244260440051496043046859915177}{108809009162877462660216500013146207148225456066709893258368}$
Class group and class number
$C_{6}\times C_{6}\times C_{23058}$, which has order $830088$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.48888868202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.2, \(\Q(\zeta_{7})^+\), 3.3.3969.1, 6.0.480048687.1, 6.0.1152596897487.9, 6.0.1581065703.2, 6.0.1152596897487.8, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $29$ | 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |