Normalized defining polynomial
\( x^{18} - 12 x^{16} - 10 x^{15} + 108 x^{14} + 42 x^{13} - 447 x^{12} + 222 x^{11} + 2181 x^{10} - 4754 x^{9} - 5631 x^{8} + 19452 x^{7} + 1661 x^{6} - 32016 x^{5} + 66060 x^{4} - 105666 x^{3} + 112833 x^{2} - 91314 x + 53433 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1529686226742116542605950976=-\,2^{27}\cdot 3^{24}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{5}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{2} a^{8} - \frac{1}{6} a^{6} + \frac{1}{6} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{6} a^{7} + \frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{1}{2} a$, $\frac{1}{18} a^{14} - \frac{1}{9} a^{11} - \frac{2}{9} a^{8} + \frac{1}{3} a^{7} + \frac{1}{9} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{1404} a^{15} - \frac{1}{156} a^{14} - \frac{7}{468} a^{13} - \frac{23}{351} a^{12} + \frac{77}{468} a^{11} - \frac{2}{39} a^{10} - \frac{229}{1404} a^{9} - \frac{7}{117} a^{8} - \frac{59}{468} a^{7} - \frac{76}{351} a^{6} + \frac{11}{156} a^{5} - \frac{1}{78} a^{4} + \frac{163}{468} a^{3} + \frac{17}{39} a^{2} + \frac{4}{13} a - \frac{5}{52}$, $\frac{1}{23868} a^{16} + \frac{1}{7956} a^{15} + \frac{217}{7956} a^{14} - \frac{320}{5967} a^{13} + \frac{215}{2652} a^{12} + \frac{134}{1989} a^{11} - \frac{3433}{23868} a^{10} - \frac{197}{1989} a^{9} - \frac{2371}{7956} a^{8} - \frac{2713}{5967} a^{7} - \frac{19}{612} a^{6} + \frac{47}{306} a^{5} - \frac{245}{612} a^{4} - \frac{28}{663} a^{3} + \frac{47}{663} a^{2} + \frac{239}{884} a + \frac{63}{221}$, $\frac{1}{26288187056359947970313336883443484} a^{17} + \frac{270401429070271416759489050083}{13144093528179973985156668441721742} a^{16} - \frac{3727816112018567538548055269603}{26288187056359947970313336883443484} a^{15} + \frac{21270040473509650630974494873959}{773181972245880822656274614218926} a^{14} - \frac{135531147364531563558369815758642}{6572046764089986992578334220860871} a^{13} + \frac{1202427368230443635593798100440483}{26288187056359947970313336883443484} a^{12} - \frac{73925050731310838471693434637659}{505542058776152845582948786220067} a^{11} + \frac{111532020856908904516762091962895}{1546363944491761645312549228437852} a^{10} - \frac{87234023816642598654922022405437}{6572046764089986992578334220860871} a^{9} - \frac{12926112080525688796994488528679389}{26288187056359947970313336883443484} a^{8} + \frac{906595962976342013841239868156664}{6572046764089986992578334220860871} a^{7} + \frac{7737542714440985029400691222718193}{26288187056359947970313336883443484} a^{6} + \frac{185679936155380350115268904119774}{730227418232220776953148246762319} a^{5} - \frac{292589124527298384597001549305991}{8762729018786649323437778961147828} a^{4} - \frac{1250709905095825280697733454900459}{8762729018786649323437778961147828} a^{3} + \frac{52881623210633908205482805099827}{324545519214320345312510331894364} a^{2} - \frac{140364859520143651941122577863151}{324545519214320345312510331894364} a + \frac{67369888723737588829003149644399}{973636557642961035937530995683092}$
Class group and class number
$C_{12}$, which has order $12$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 793654.483575 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-14}) \), 3.1.4536.1 x3, \(\Q(\zeta_{9})^+\), 6.0.1152216576.1, 6.0.1152216576.2, 6.0.14224896.1 x2, 9.3.93329542656.3 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.14224896.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |