Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 156 x^{15} + 414 x^{14} - 882 x^{13} + 1554 x^{12} - 2304 x^{11} + 2907 x^{10} + 223429361 x^{9} - 1005443343 x^{8} - 4021787304 x^{7} + 18768331554 x^{6} - 14076248382 x^{5} - 14076247086 x^{4} + 18768329844 x^{3} - 4021784955 x^{2} - 1005446259 x + 12480520737495001 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-152674612414621913640596447375544095872332030000000000000000=-\,2^{16}\cdot 3^{53}\cdot 5^{16}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1940.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{155} a^{6} - \frac{3}{155} a^{5} + \frac{6}{155} a^{4} - \frac{7}{155} a^{3} + \frac{6}{155} a^{2} - \frac{3}{155} a + \frac{1}{155}$, $\frac{1}{155} a^{7} - \frac{3}{155} a^{5} + \frac{11}{155} a^{4} - \frac{3}{31} a^{3} + \frac{3}{31} a^{2} - \frac{8}{155} a + \frac{3}{155}$, $\frac{1}{155} a^{8} + \frac{2}{155} a^{5} + \frac{3}{155} a^{4} - \frac{6}{155} a^{3} + \frac{2}{31} a^{2} - \frac{6}{155} a + \frac{3}{155}$, $\frac{1}{4185} a^{9} + \frac{1}{465} a^{8} + \frac{1}{465} a^{7} + \frac{1}{1395} a^{6} - \frac{1}{465} a^{5} + \frac{14}{465} a^{4} - \frac{2}{45} a^{3} + \frac{5}{93} a^{2} - \frac{14}{465} a + \frac{383}{837}$, $\frac{1}{20925} a^{10} - \frac{1}{465} a^{8} + \frac{2}{1395} a^{7} + \frac{1}{465} a^{6} - \frac{34}{2325} a^{5} + \frac{29}{1395} a^{4} - \frac{2}{93} a^{3} + \frac{1}{93} a^{2} - \frac{481}{4185} a - \frac{1}{2325}$, $\frac{1}{20925} a^{11} + \frac{2}{1395} a^{8} + \frac{1}{465} a^{7} - \frac{4}{2325} a^{6} + \frac{2}{1395} a^{5} + \frac{8}{465} a^{4} - \frac{13}{465} a^{3} - \frac{319}{4185} a^{2} - \frac{46}{2325} a + \frac{4}{465}$, $\frac{1}{648675} a^{12} - \frac{2}{216225} a^{11} - \frac{2}{129735} a^{10} - \frac{2}{25947} a^{9} + \frac{11}{4805} a^{8} - \frac{352}{216225} a^{7} - \frac{418}{216225} a^{6} + \frac{208}{14415} a^{5} - \frac{893}{43245} a^{4} + \frac{6322}{25947} a^{3} - \frac{74393}{216225} a^{2} - \frac{141676}{648675} a + \frac{28886}{129735}$, $\frac{1}{648675} a^{13} - \frac{1}{43245} a^{11} + \frac{14}{648675} a^{10} - \frac{11}{129735} a^{9} + \frac{46}{72075} a^{8} - \frac{8}{4805} a^{7} - \frac{107}{43245} a^{6} + \frac{949}{72075} a^{5} + \frac{24929}{129735} a^{4} + \frac{257}{6975} a^{3} - \frac{15802}{43245} a^{2} + \frac{59761}{129735} a - \frac{147616}{648675}$, $\frac{1}{3243375} a^{14} - \frac{2}{3243375} a^{13} - \frac{2}{3243375} a^{12} + \frac{28}{3243375} a^{11} + \frac{22}{1081125} a^{10} + \frac{184}{3243375} a^{9} - \frac{2416}{1081125} a^{8} + \frac{1654}{1081125} a^{7} + \frac{2234}{1081125} a^{6} + \frac{1394254}{3243375} a^{5} + \frac{427711}{3243375} a^{4} + \frac{290653}{3243375} a^{3} + \frac{395248}{3243375} a^{2} - \frac{1378}{360375} a + \frac{1440106}{3243375}$, $\frac{1}{3243375} a^{15} - \frac{1}{3243375} a^{13} - \frac{1}{3243375} a^{12} + \frac{14}{1081125} a^{11} + \frac{16}{3243375} a^{10} + \frac{59}{648675} a^{9} - \frac{821}{360375} a^{8} + \frac{188}{120125} a^{7} + \frac{4363}{3243375} a^{6} + \frac{38547}{120125} a^{5} - \frac{12274}{129735} a^{4} + \frac{1027559}{3243375} a^{3} + \frac{6998}{1081125} a^{2} - \frac{726203}{3243375} a - \frac{1084838}{3243375}$, $\frac{1}{3243375} a^{16} + \frac{2}{3243375} a^{13} + \frac{2}{120125} a^{11} + \frac{56}{3243375} a^{10} - \frac{11}{648675} a^{9} - \frac{51}{120125} a^{8} + \frac{398}{648675} a^{7} + \frac{3137}{1081125} a^{6} + \frac{38667}{120125} a^{5} - \frac{201611}{648675} a^{4} - \frac{388816}{1081125} a^{3} + \frac{8523}{24025} a^{2} + \frac{281494}{648675} a + \frac{731126}{3243375}$, $\frac{1}{323833433421248912065254796399047418506870647259531920765709463922625} a^{17} + \frac{12852621390433151016687810469663718776401225761694187957302431}{323833433421248912065254796399047418506870647259531920765709463922625} a^{16} + \frac{561783832121522619309477803216105643112949001242272773081002}{64766686684249782413050959279809483701374129451906384153141892784525} a^{15} + \frac{1117345451250871382252397285137937092418276100957015047121954}{19049025495367583062662046847002789323933567485854818868571144936625} a^{14} - \frac{6155802379456087346022999415588102805030838906438271333849171}{64766686684249782413050959279809483701374129451906384153141892784525} a^{13} + \frac{26282745392608134743376545959683193436673817242055334930960477}{323833433421248912065254796399047418506870647259531920765709463922625} a^{12} - \frac{222693279096616784352594814016444388274268947788525113465941937}{323833433421248912065254796399047418506870647259531920765709463922625} a^{11} - \frac{6092633028230450939866702601073629130566292891695804210084150338}{323833433421248912065254796399047418506870647259531920765709463922625} a^{10} - \frac{11950624236702806049480151425532266114764144079571011841841716013}{323833433421248912065254796399047418506870647259531920765709463922625} a^{9} + \frac{89983482640688938647980611312742373005588257109487536037943742804}{64766686684249782413050959279809483701374129451906384153141892784525} a^{8} + \frac{997865387947956821011435676383743503541214459399039499328068272313}{323833433421248912065254796399047418506870647259531920765709463922625} a^{7} + \frac{14282534717368278532993757066467029864589805705794486703736781316}{19049025495367583062662046847002789323933567485854818868571144936625} a^{6} + \frac{56495206969547255128667153067897091700995331819124624728978227249913}{323833433421248912065254796399047418506870647259531920765709463922625} a^{5} - \frac{53969647101463476169975102501983076874574713387888568335328000836027}{323833433421248912065254796399047418506870647259531920765709463922625} a^{4} - \frac{7486605091905225331234756589407082706954760094328893541156221264999}{64766686684249782413050959279809483701374129451906384153141892784525} a^{3} + \frac{28108744958685139043991598845256148580014728215848770009135310430298}{323833433421248912065254796399047418506870647259531920765709463922625} a^{2} + \frac{56797193417306550675142394856251943264848997761522645134597662058424}{323833433421248912065254796399047418506870647259531920765709463922625} a + \frac{1367455071084800467933735866881453447069243859649476498858712}{2898713754915109996532687051940611742394315105145552375953875}$
Class group and class number
Not computed
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5925950958515277866446857553593475753708332530}{33281528595084740644673608653439438702675520330882894183343941} a^{17} + \frac{1359996400408431558439762877443212803767198494385}{898601272067287997406187433642864844972239048933838142950286407} a^{16} - \frac{7135955387950082416615519551210081765702350420048}{898601272067287997406187433642864844972239048933838142950286407} a^{15} + \frac{1548218520563784019586833444614782256117429120230}{52858898356899293965069849037815579116014061701990478997075671} a^{14} - \frac{79038867792346764572348975095909293483093848963390}{898601272067287997406187433642864844972239048933838142950286407} a^{13} + \frac{197076284580355823957948931039126081311425516413340}{898601272067287997406187433642864844972239048933838142950286407} a^{12} - \frac{443878245288797937588533171174210476169141294180630}{898601272067287997406187433642864844972239048933838142950286407} a^{11} - \frac{297613796745441071904493032646294779692823317982308906}{299533757355762665802062477880954948324079682977946047650095469} a^{10} + \frac{1488967000663010104450182671009076671683161946479655430}{299533757355762665802062477880954948324079682977946047650095469} a^{9} - \frac{19363159840492802357715014304673364879778414211092334570}{299533757355762665802062477880954948324079682977946047650095469} a^{8} + \frac{205550351876017986397657481580366988210753526706154404010}{898601272067287997406187433642864844972239048933838142950286407} a^{7} + \frac{22502130967937567278565994075945749434344429895882846790}{52858898356899293965069849037815579116014061701990478997075671} a^{6} - \frac{1848230898438781494071140103232803688238589150789023118564}{898601272067287997406187433642864844972239048933838142950286407} a^{5} + \frac{2350452955394315435520194926154905715036144209272187606810}{898601272067287997406187433642864844972239048933838142950286407} a^{4} - \frac{1389633850609231501562673190067372465830890113669537506490}{898601272067287997406187433642864844972239048933838142950286407} a^{3} + \frac{4181671665204536831443362293166823359506644712516405000080}{898601272067287997406187433642864844972239048933838142950286407} a^{2} - \frac{33282804423232168657433314310200901987175538165294502546890840}{299533757355762665802062477880954948324079682977946047650095469} a + \frac{496540149305693657395802886040261647265506352149983474}{893733766497894938615697244981111262926524100711620573} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $D_9:C_3$ |
| Character table for $D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.24300.2 x3, 6.0.1771470000.4, 9.1.225591527925010157904900000000.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $31$ | 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |