Normalized defining polynomial
\( x^{18} - 57 x^{15} + 1519 x^{12} - 24826 x^{9} + 234811 x^{6} - 1058780 x^{3} + 2048383 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15185916524095598919108950587104723=-\,3^{27}\cdot 3547^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 3547$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1937180130943} a^{15} - \frac{368570290391}{1937180130943} a^{12} + \frac{682329217511}{1937180130943} a^{9} - \frac{408758730245}{1937180130943} a^{6} + \frac{756800286735}{1937180130943} a^{3} - \frac{27625270952}{1937180130943}$, $\frac{1}{246021876629761} a^{16} - \frac{46860893433023}{246021876629761} a^{13} + \frac{76232354324288}{246021876629761} a^{10} - \frac{60461342789478}{246021876629761} a^{7} + \frac{107301707488600}{246021876629761} a^{4} + \frac{89082660752426}{246021876629761} a$, $\frac{1}{31244778331979647} a^{17} - \frac{10379779711882985}{31244778331979647} a^{14} - \frac{8288511451087586}{31244778331979647} a^{11} - \frac{2274658232457327}{31244778331979647} a^{8} + \frac{3059564227045732}{31244778331979647} a^{5} - \frac{7291573638140404}{31244778331979647} a^{2}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{201253663382}{31244778331979647} a^{17} + \frac{9140831361135}{31244778331979647} a^{14} - \frac{207773758990374}{31244778331979647} a^{11} + \frac{2840525454726140}{31244778331979647} a^{8} - \frac{18954508462134991}{31244778331979647} a^{5} + \frac{42624551673412139}{31244778331979647} a^{2} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2059455244.146741 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2\times S_3$ (as 18T17):
| A solvable group of order 54 |
| The 27 conjugacy class representatives for $C_3^2\times S_3$ |
| Character table for $C_3^2\times S_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), 6.0.247635936747.2, 6.0.339692643.3, \(\Q(\zeta_{9})\), 6.0.247635936747.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 3547 | Data not computed | ||||||