Normalized defining polynomial
\( x^{18} - 3 x^{17} - 3 x^{16} + 20 x^{15} + 9 x^{14} - 60 x^{13} - 63 x^{12} + 60 x^{11} + 345 x^{10} - 40 x^{9} - 237 x^{8} - 489 x^{7} + 136 x^{6} + 129 x^{5} + 63 x^{4} + 102 x^{3} + 168 x^{2} + 87 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-151749870875069854858407=-\,3^{21}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{15} a^{12} + \frac{1}{5} a^{10} + \frac{4}{15} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{4}{15} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{15} a^{13} - \frac{2}{15} a^{10} + \frac{2}{5} a^{9} - \frac{1}{3} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{1305} a^{14} + \frac{5}{261} a^{13} + \frac{28}{1305} a^{12} + \frac{97}{1305} a^{11} - \frac{632}{1305} a^{10} + \frac{113}{261} a^{9} + \frac{343}{1305} a^{8} - \frac{62}{1305} a^{7} - \frac{362}{1305} a^{6} - \frac{122}{435} a^{5} + \frac{22}{435} a^{4} - \frac{25}{87} a^{3} + \frac{214}{435} a^{2} - \frac{2}{15} a + \frac{7}{15}$, $\frac{1}{1305} a^{15} + \frac{4}{435} a^{13} + \frac{2}{435} a^{12} + \frac{5}{87} a^{11} - \frac{28}{145} a^{10} - \frac{41}{435} a^{9} + \frac{79}{435} a^{8} - \frac{2}{87} a^{7} - \frac{364}{1305} a^{6} - \frac{49}{145} a^{5} + \frac{13}{29} a^{4} + \frac{8}{29} a^{3} - \frac{101}{435} a^{2} + \frac{1}{5} a - \frac{7}{15}$, $\frac{1}{1066185} a^{16} - \frac{371}{1066185} a^{15} + \frac{193}{1066185} a^{14} - \frac{15929}{1066185} a^{13} - \frac{18659}{1066185} a^{12} + \frac{19820}{213237} a^{11} + \frac{73817}{213237} a^{10} + \frac{152398}{1066185} a^{9} + \frac{31024}{1066185} a^{8} + \frac{30118}{71079} a^{7} - \frac{17713}{71079} a^{6} + \frac{86851}{355395} a^{5} + \frac{33575}{71079} a^{4} + \frac{62906}{355395} a^{3} - \frac{146689}{355395} a^{2} - \frac{1967}{4085} a + \frac{1606}{4085}$, $\frac{1}{198213387165} a^{17} - \frac{59282}{198213387165} a^{16} + \frac{15928022}{198213387165} a^{15} + \frac{58948961}{198213387165} a^{14} - \frac{54789766}{10432283535} a^{13} + \frac{3726355988}{198213387165} a^{12} - \frac{5840332768}{198213387165} a^{11} - \frac{74976762616}{198213387165} a^{10} + \frac{53588138297}{198213387165} a^{9} + \frac{38173571158}{198213387165} a^{8} + \frac{726296420}{2086456707} a^{7} + \frac{8346817051}{66071129055} a^{6} + \frac{16143320291}{66071129055} a^{5} + \frac{584851211}{22023709685} a^{4} + \frac{9269398984}{22023709685} a^{3} - \frac{18153170524}{66071129055} a^{2} - \frac{173563253}{2278314795} a + \frac{44412117}{151887653}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19560.8039608 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), 3.1.87.1 x3, 6.0.658503.1, 9.1.41764235769.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |