Normalized defining polynomial
\( x^{18} - 3 x^{17} + 24 x^{16} + 42 x^{15} + 393 x^{14} - 1725 x^{13} + 32856 x^{12} - 157041 x^{11} + 983802 x^{10} - 3697991 x^{9} + 16474170 x^{8} - 51892869 x^{7} + 180078636 x^{6} - 449775009 x^{5} + 1169945709 x^{4} - 2071336188 x^{3} + 3760200192 x^{2} - 3727057221 x + 4059023093 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15122562715473759157739145863562318625468416=-\,2^{12}\cdot 3^{30}\cdot 7^{14}\cdot 31^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $250.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{21} a^{15} + \frac{1}{21} a^{12} - \frac{1}{7} a^{11} - \frac{1}{21} a^{10} - \frac{2}{21} a^{9} - \frac{2}{21} a^{8} + \frac{1}{3} a^{7} + \frac{8}{21} a^{6} + \frac{1}{3} a^{5} - \frac{1}{7} a^{4} - \frac{5}{21} a^{3} - \frac{4}{21} a^{2} - \frac{5}{21} a - \frac{2}{7}$, $\frac{1}{231} a^{16} + \frac{2}{231} a^{15} + \frac{4}{33} a^{14} - \frac{2}{77} a^{13} - \frac{12}{77} a^{12} - \frac{1}{11} a^{11} - \frac{1}{21} a^{10} + \frac{3}{7} a^{9} - \frac{20}{77} a^{8} + \frac{8}{231} a^{7} + \frac{2}{231} a^{6} - \frac{2}{7} a^{5} - \frac{1}{21} a^{4} - \frac{5}{33} a^{3} + \frac{43}{231} a^{2} - \frac{79}{231} a - \frac{47}{231}$, $\frac{1}{56190473879470335121680880678098994655729884665276887199} a^{17} - \frac{106720561154091973623461045325178692630460546107842882}{56190473879470335121680880678098994655729884665276887199} a^{16} + \frac{257755862931950885167471942632145255388526481942341376}{56190473879470335121680880678098994655729884665276887199} a^{15} - \frac{734512808991332704452022050130660210267388895047384834}{5108224898133666829243716425281726786884534969570626109} a^{14} - \frac{105579815158233477997288510854827036723749963009737236}{8027210554210047874525840096871284950818554952182412457} a^{13} - \frac{2229315559002531523801572404988256731149727759700412593}{18730157959823445040560293559366331551909961555092295733} a^{12} - \frac{990700873779567868047837548405001608037964302460805132}{56190473879470335121680880678098994655729884665276887199} a^{11} - \frac{810551578089833609380257773157566999804391853792001035}{5108224898133666829243716425281726786884534969570626109} a^{10} + \frac{11362170367276492398482083894541317873436139666924693068}{56190473879470335121680880678098994655729884665276887199} a^{9} - \frac{23260560632529840683154016752433761581002957718482218235}{56190473879470335121680880678098994655729884665276887199} a^{8} - \frac{23622585340592637024271038820764724075178180358875503363}{56190473879470335121680880678098994655729884665276887199} a^{7} + \frac{21931121588578630057651051460907739826946115448389297768}{56190473879470335121680880678098994655729884665276887199} a^{6} - \frac{195199167029833403983356655993115015026413321465441892}{729746414019095261320530917897389540983504995652946587} a^{5} + \frac{2412544043295329083795043411700899478019946822038740514}{56190473879470335121680880678098994655729884665276887199} a^{4} - \frac{3372459796541659413258565422010106294722253992090915571}{56190473879470335121680880678098994655729884665276887199} a^{3} - \frac{12362522447914025061943579083132685127705194234190419427}{56190473879470335121680880678098994655729884665276887199} a^{2} + \frac{67133576770006522947872433040323196497108805894676659}{263805041687654155500849205061497627491689599367497123} a - \frac{49170174034847367868118859519248209113162539168185135}{247535127222336278069078769507044029320395967688444437}$
Class group and class number
$C_{3}\times C_{12}\times C_{12}\times C_{137592}$, which has order $59439744$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4695974.091249611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 3.3.756.1, 3.3.3969.2, 6.0.17026628976.7, 6.0.469296461151.7, 9.9.756284282720064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $31$ | 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 31.12.6.1 | $x^{12} + 178746 x^{6} - 114516604 x^{2} + 7987533129$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |