Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 102 x^{15} + 207 x^{14} - 399 x^{13} + 723 x^{12} - 1089 x^{11} + 1371 x^{10} - 1465 x^{9} + 1314 x^{8} - 699 x^{7} + 231 x^{6} + 342 x^{5} - 336 x^{4} + 336 x^{3} - 144 x^{2} - 96 x + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-150799169014635498046875=-\,3^{31}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{4}{9} a^{2} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{9} - \frac{2}{9} a^{3} - \frac{2}{9}$, $\frac{1}{18} a^{13} - \frac{1}{18} a^{12} - \frac{1}{18} a^{11} + \frac{1}{9} a^{10} + \frac{1}{18} a^{9} + \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{18} a^{4} + \frac{4}{9} a^{3} + \frac{5}{18} a^{2} - \frac{7}{18} a - \frac{4}{9}$, $\frac{1}{36} a^{14} - \frac{1}{36} a^{13} - \frac{1}{36} a^{12} - \frac{1}{18} a^{11} - \frac{1}{36} a^{10} + \frac{5}{36} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{7}{36} a^{5} + \frac{1}{18} a^{4} - \frac{7}{36} a^{3} - \frac{5}{36} a^{2} + \frac{1}{18} a + \frac{2}{9}$, $\frac{1}{504} a^{15} - \frac{1}{168} a^{14} + \frac{5}{504} a^{13} - \frac{2}{63} a^{12} + \frac{1}{72} a^{11} - \frac{5}{504} a^{10} + \frac{5}{504} a^{9} + \frac{47}{168} a^{8} - \frac{29}{168} a^{7} - \frac{59}{504} a^{6} - \frac{3}{7} a^{5} - \frac{67}{504} a^{4} + \frac{125}{504} a^{3} + \frac{25}{126} a^{2} - \frac{4}{63} a + \frac{13}{63}$, $\frac{1}{1008} a^{16} - \frac{1}{1008} a^{15} - \frac{1}{1008} a^{14} - \frac{1}{168} a^{13} - \frac{25}{1008} a^{12} - \frac{47}{1008} a^{11} - \frac{13}{112} a^{10} + \frac{95}{1008} a^{9} + \frac{121}{336} a^{8} + \frac{103}{1008} a^{7} + \frac{169}{504} a^{6} - \frac{163}{1008} a^{5} - \frac{115}{336} a^{4} - \frac{23}{72} a^{3} - \frac{1}{18} a^{2} - \frac{17}{42} a - \frac{1}{63}$, $\frac{1}{95929725909024} a^{17} - \frac{45314652931}{95929725909024} a^{16} + \frac{143127623}{31976575303008} a^{15} + \frac{73028974955}{5995607869314} a^{14} - \frac{25483329107}{1880975017824} a^{13} + \frac{824933221985}{31976575303008} a^{12} - \frac{613611622877}{13704246558432} a^{11} - \frac{85965497341}{806132150496} a^{10} + \frac{1997555137339}{31976575303008} a^{9} + \frac{13148318619637}{95929725909024} a^{8} - \frac{608316487985}{1713030819804} a^{7} + \frac{3435626311679}{31976575303008} a^{6} - \frac{36295132402915}{95929725909024} a^{5} + \frac{3748314384455}{7994143825752} a^{4} + \frac{223151775514}{999267978219} a^{3} + \frac{2547782675147}{11991215738628} a^{2} - \frac{1519112348213}{5995607869314} a - \frac{477267959887}{999267978219}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{33922039889}{13704246558432} a^{17} - \frac{1436804168039}{95929725909024} a^{16} + \frac{3451558400573}{95929725909024} a^{15} - \frac{589357380931}{47964862954512} a^{14} - \frac{297120867595}{5642925053472} a^{13} + \frac{10703795170823}{95929725909024} a^{12} - \frac{40313871479767}{95929725909024} a^{11} + \frac{2532578264663}{1880975017824} a^{10} - \frac{77255606189413}{31976575303008} a^{9} + \frac{354326607439829}{95929725909024} a^{8} - \frac{248543334933463}{47964862954512} a^{7} + \frac{94180413408521}{13704246558432} a^{6} - \frac{497390324798159}{95929725909024} a^{5} + \frac{39318642066941}{6852123279216} a^{4} - \frac{37615246786525}{23982431477256} a^{3} + \frac{12597955682797}{11991215738628} a^{2} + \frac{216160802231}{142752568317} a - \frac{1959864226556}{999267978219} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 111472.114435 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.675.1 x3, \(\Q(\zeta_{9})^+\), 6.0.1366875.1, 6.0.12301875.1 x2, \(\Q(\zeta_{9})\), 9.3.224201671875.3 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.12301875.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||