Normalized defining polynomial
\( x^{18} - 258 x^{15} + 67464 x^{12} + 235656 x^{9} + 364176 x^{6} + 1555200 x^{3} + 2985984 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-149893238403862212943036837746306920448=-\,2^{12}\cdot 3^{33}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $132.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{6} a^{3}$, $\frac{1}{6} a^{4}$, $\frac{1}{6} a^{5}$, $\frac{1}{36} a^{6}$, $\frac{1}{36} a^{7}$, $\frac{1}{108} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{216} a^{9}$, $\frac{1}{432} a^{10} - \frac{1}{2} a$, $\frac{1}{1296} a^{11} + \frac{1}{18} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{147744} a^{12} - \frac{4}{513} a^{6} - \frac{1}{12} a^{3} - \frac{1}{57}$, $\frac{1}{147744} a^{13} - \frac{4}{513} a^{7} - \frac{1}{12} a^{4} - \frac{1}{57} a$, $\frac{1}{295488} a^{14} - \frac{1}{2592} a^{11} + \frac{1}{1368} a^{8} + \frac{1}{72} a^{5} + \frac{17}{228} a^{2}$, $\frac{1}{316286809344} a^{15} + \frac{97453}{52714468224} a^{12} - \frac{812551}{4392872352} a^{9} - \frac{12815621}{1464290784} a^{6} - \frac{16435439}{244048464} a^{3} - \frac{1002583}{5084343}$, $\frac{1}{632573618688} a^{16} + \frac{97453}{105428936448} a^{13} - \frac{812551}{8785744704} a^{10} + \frac{27859123}{2928581568} a^{7} - \frac{16435439}{488096928} a^{4} - \frac{1002583}{10168686} a$, $\frac{1}{3795441712128} a^{17} - \frac{616139}{632573618688} a^{14} - \frac{812551}{52714468224} a^{11} - \frac{30655421}{17571489408} a^{8} + \frac{105588793}{2928581568} a^{5} - \frac{10992871}{61012116} a^{2}$
Class group and class number
$C_{3}\times C_{3}\times C_{9}$, which has order $81$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{23425}{16646674176} a^{15} + \frac{1014671}{2774445696} a^{12} - \frac{22110389}{231203808} a^{9} - \frac{11509171}{77067936} a^{6} - \frac{6630757}{12844656} a^{3} - \frac{322328}{267597} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 184287206649.34076 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$He_3:C_2$ (as 18T21):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $He_3:C_2$ |
| Character table for $He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.4107.1 x3, 6.0.50602347.2, 9.1.7068550968995512896.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.6.11.14 | $x^{6} + 12 x^{3} + 18 x^{2} + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ |
| 3.6.11.7 | $x^{6} + 21$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.14 | $x^{6} + 12 x^{3} + 18 x^{2} + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| $37$ | 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |