Normalized defining polynomial
\( x^{18} + 434 x^{16} + 74648 x^{14} + 6681864 x^{12} + 343561344 x^{10} + 10535881216 x^{8} + 192490790912 x^{6} + 2009002082304 x^{4} + 10714677772288 x^{2} + 21429355544576 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14952227306849866974860634662963099734114304=-\,2^{27}\cdot 7^{15}\cdot 31^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $250.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1736=2^{3}\cdot 7\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1736}(1,·)$, $\chi_{1736}(25,·)$, $\chi_{1736}(243,·)$, $\chi_{1736}(249,·)$, $\chi_{1736}(619,·)$, $\chi_{1736}(625,·)$, $\chi_{1736}(843,·)$, $\chi_{1736}(867,·)$, $\chi_{1736}(1017,·)$, $\chi_{1736}(1091,·)$, $\chi_{1736}(1121,·)$, $\chi_{1736}(1235,·)$, $\chi_{1736}(1241,·)$, $\chi_{1736}(1363,·)$, $\chi_{1736}(1369,·)$, $\chi_{1736}(1483,·)$, $\chi_{1736}(1513,·)$, $\chi_{1736}(1587,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{1736} a^{6}$, $\frac{1}{3472} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a$, $\frac{1}{13888} a^{8} + \frac{1}{6944} a^{6} - \frac{1}{8} a^{4} + \frac{1}{8} a^{2}$, $\frac{1}{27776} a^{9} + \frac{1}{13888} a^{7} - \frac{1}{16} a^{5} + \frac{1}{16} a^{3}$, $\frac{1}{111104} a^{10} + \frac{1}{55552} a^{8} - \frac{1}{13888} a^{6} - \frac{7}{64} a^{4}$, $\frac{1}{222208} a^{11} + \frac{1}{111104} a^{9} - \frac{1}{27776} a^{7} + \frac{9}{128} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{4629037056} a^{12} + \frac{29}{10665984} a^{10} + \frac{11}{888832} a^{8} - \frac{53}{888832} a^{6} + \frac{25}{1536} a^{4} + \frac{5}{32} a^{2} + \frac{1}{24}$, $\frac{1}{9258074112} a^{13} + \frac{29}{21331968} a^{11} + \frac{11}{1777664} a^{9} - \frac{53}{1777664} a^{7} - \frac{359}{3072} a^{5} - \frac{11}{64} a^{3} - \frac{23}{48} a$, $\frac{1}{37032296448} a^{14} + \frac{1}{18516148224} a^{12} - \frac{1}{21331968} a^{10} + \frac{21}{1015808} a^{8} - \frac{101}{666624} a^{6} + \frac{41}{1536} a^{4} + \frac{19}{192} a^{2} + \frac{11}{24}$, $\frac{1}{74064592896} a^{15} + \frac{1}{37032296448} a^{13} - \frac{1}{42663936} a^{11} + \frac{21}{2031616} a^{9} - \frac{101}{1333248} a^{7} + \frac{41}{3072} a^{5} + \frac{19}{384} a^{3} - \frac{13}{48} a$, $\frac{1}{833374799265792} a^{16} - \frac{5}{1431915462656} a^{14} + \frac{10495}{104171849908224} a^{12} - \frac{26027}{22859743232} a^{10} - \frac{76943}{3750426624} a^{8} + \frac{1784071}{7500853248} a^{6} - \frac{403043}{4320768} a^{4} + \frac{84283}{540096} a^{2} - \frac{3653}{11252}$, $\frac{1}{1666749598531584} a^{17} - \frac{5}{2863830925312} a^{15} + \frac{10495}{208343699816448} a^{13} - \frac{26027}{45719486464} a^{11} - \frac{76943}{7500853248} a^{9} + \frac{1784071}{15001706496} a^{7} - \frac{403043}{8641536} a^{5} - \frac{185765}{1080192} a^{3} + \frac{7599}{22504} a$
Class group and class number
$C_{2}\times C_{18}\times C_{126}\times C_{16884}$, which has order $76585824$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2999047.7597124763 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-434}) \), 3.3.961.1, \(\Q(\zeta_{7})^+\), 3.3.47089.1, 3.3.47089.2, 6.0.5027736982016.2, 6.0.256357036544.2, Deg 6, 6.0.246359112118784.1, 9.9.104413920565969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 7 | Data not computed | ||||||
| 31 | Data not computed | ||||||