Normalized defining polynomial
\( x^{18} + 553 x^{16} + 124978 x^{14} + 14852474 x^{12} + 993573441 x^{10} + 37101053689 x^{8} + 720817500956 x^{6} + 6348478632580 x^{4} + 20090550387600 x^{2} + 692684296192 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-148517229624401636719219621434603498075107117498368=-\,2^{30}\cdot 7^{15}\cdot 79^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $612.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{1106} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2212} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{2212} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{4424} a^{9} - \frac{1}{4424} a^{8} - \frac{1}{2212} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{137144} a^{10} - \frac{1}{137144} a^{8} + \frac{41}{137144} a^{6} - \frac{55}{248} a^{4} - \frac{5}{124} a^{2} - \frac{11}{31}$, $\frac{1}{274288} a^{11} - \frac{1}{274288} a^{9} - \frac{1}{4424} a^{8} + \frac{41}{274288} a^{7} - \frac{1}{2212} a^{6} - \frac{55}{496} a^{5} + \frac{1}{8} a^{4} - \frac{5}{248} a^{3} + \frac{1}{4} a^{2} + \frac{10}{31} a$, $\frac{1}{303362528} a^{12} - \frac{1}{548576} a^{11} + \frac{1}{548576} a^{10} - \frac{61}{548576} a^{9} + \frac{53}{548576} a^{8} - \frac{41}{548576} a^{7} - \frac{233}{548576} a^{6} + \frac{117}{992} a^{5} - \frac{83}{496} a^{4} - \frac{119}{496} a^{3} - \frac{9}{31} a^{2} + \frac{11}{124} a + \frac{4}{31}$, $\frac{1}{303362528} a^{13} - \frac{1}{68572} a^{9} - \frac{13}{274288} a^{7} - \frac{49}{992} a^{5} - \frac{139}{496} a^{3} - \frac{35}{124} a$, $\frac{1}{18808476736} a^{14} - \frac{13}{9404238368} a^{12} - \frac{29}{17005856} a^{10} + \frac{27}{8502928} a^{8} - \frac{10119}{34011712} a^{6} - \frac{1041}{30752} a^{4} - \frac{1}{2} a^{3} + \frac{187}{7688} a^{2} - \frac{1}{2} a - \frac{453}{961}$, $\frac{1}{37616953472} a^{15} + \frac{9}{9404238368} a^{13} + \frac{33}{34011712} a^{11} + \frac{897}{8502928} a^{9} - \frac{1}{4424} a^{8} + \frac{1247}{9717632} a^{7} - \frac{1}{2212} a^{6} + \frac{2781}{30752} a^{5} + \frac{1}{8} a^{4} - \frac{401}{30752} a^{3} + \frac{1}{4} a^{2} - \frac{1657}{7688} a$, $\frac{1}{78807440371468428928} a^{16} - \frac{506551}{45395990997389648} a^{14} + \frac{21500189059}{39403720185734214464} a^{12} - \frac{1}{548576} a^{11} + \frac{44982768231}{35627233440989344} a^{10} - \frac{61}{548576} a^{9} - \frac{19043521715963}{142508933763957376} a^{8} - \frac{41}{548576} a^{7} - \frac{5659119497033}{35627233440989344} a^{6} + \frac{117}{992} a^{5} - \frac{9491400279561}{64425376927648} a^{4} - \frac{119}{496} a^{3} + \frac{672638349803}{16106344231912} a^{2} + \frac{11}{124} a - \frac{846360406444}{2013293028989}$, $\frac{1}{157614880742936857856} a^{17} + \frac{39213723}{5084350991707640576} a^{15} + \frac{8458593163}{11258205767352632704} a^{13} - \frac{230569149735}{142508933763957376} a^{11} - \frac{19336821428823}{285017867527914752} a^{9} - \frac{1}{4424} a^{8} + \frac{28123227318189}{285017867527914752} a^{7} - \frac{1}{2212} a^{6} - \frac{21135398880103}{128850753855296} a^{5} + \frac{1}{8} a^{4} + \frac{36011495778057}{128850753855296} a^{3} + \frac{1}{4} a^{2} - \frac{5955929049391}{32212688463824} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{12}\times C_{1303020}$, which has order $1000719360$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20721910881.979282 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-553}) \), 3.3.305809.1, 3.3.49928.1, Deg 6, 6.0.3309829561471552.1, 9.9.14642685979950146048.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 7 | Data not computed | ||||||
| 79 | Data not computed | ||||||