Normalized defining polynomial
\( x^{18} - 6 x^{17} + 33 x^{16} - 130 x^{15} + 633 x^{14} - 1870 x^{13} + 6342 x^{12} - 16970 x^{11} + 50908 x^{10} - 87252 x^{9} + 276223 x^{8} - 443116 x^{7} + 892387 x^{6} - 960518 x^{5} + 5324905 x^{4} + 4622682 x^{3} + 21350862 x^{2} + 11905764 x + 19683833 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14845701048926894165227270175719424=-\,2^{27}\cdot 7^{15}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(728=2^{3}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{728}(1,·)$, $\chi_{728}(417,·)$, $\chi_{728}(9,·)$, $\chi_{728}(269,·)$, $\chi_{728}(237,·)$, $\chi_{728}(81,·)$, $\chi_{728}(341,·)$, $\chi_{728}(625,·)$, $\chi_{728}(157,·)$, $\chi_{728}(677,·)$, $\chi_{728}(289,·)$, $\chi_{728}(549,·)$, $\chi_{728}(529,·)$, $\chi_{728}(685,·)$, $\chi_{728}(573,·)$, $\chi_{728}(113,·)$, $\chi_{728}(393,·)$, $\chi_{728}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4}$, $\frac{1}{36} a^{13} + \frac{1}{36} a^{12} - \frac{1}{6} a^{11} - \frac{1}{36} a^{9} + \frac{1}{12} a^{8} + \frac{1}{6} a^{7} + \frac{1}{18} a^{6} + \frac{1}{3} a^{5} - \frac{4}{9} a^{4} - \frac{1}{18} a^{3} + \frac{1}{9} a^{2} - \frac{1}{4} a + \frac{17}{36}$, $\frac{1}{36} a^{14} + \frac{1}{18} a^{12} + \frac{1}{6} a^{11} - \frac{1}{36} a^{10} + \frac{1}{9} a^{9} - \frac{1}{6} a^{8} - \frac{1}{9} a^{7} - \frac{2}{9} a^{6} + \frac{2}{9} a^{5} + \frac{7}{18} a^{4} + \frac{1}{6} a^{3} - \frac{13}{36} a^{2} - \frac{5}{18} a - \frac{2}{9}$, $\frac{1}{36} a^{15} + \frac{1}{9} a^{12} - \frac{7}{36} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{2}{9} a^{8} - \frac{1}{18} a^{7} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} - \frac{4}{9} a^{4} + \frac{1}{4} a^{3} + \frac{5}{18} a - \frac{4}{9}$, $\frac{1}{9946826061818589252} a^{16} - \frac{13772165683013753}{1105202895757621028} a^{15} - \frac{22029081548207725}{9946826061818589252} a^{14} + \frac{61882239752351387}{9946826061818589252} a^{13} - \frac{362120972724194587}{4973413030909294626} a^{12} - \frac{2061608280583981931}{9946826061818589252} a^{11} + \frac{292685041696166603}{3315608687272863084} a^{10} - \frac{15859574287361041}{1105202895757621028} a^{9} + \frac{742336899511342435}{9946826061818589252} a^{8} - \frac{177352035716352844}{2486706515454647313} a^{7} + \frac{119477455595708501}{828902171818215771} a^{6} + \frac{682945859754419071}{1657804343636431542} a^{5} + \frac{535546000385294749}{3315608687272863084} a^{4} + \frac{4228338209505153871}{9946826061818589252} a^{3} - \frac{162251102700862409}{3315608687272863084} a^{2} - \frac{603530922815145557}{3315608687272863084} a - \frac{4403795784474605477}{9946826061818589252}$, $\frac{1}{252813150738224539362457937844516} a^{17} + \frac{2865892893659}{126406575369112269681228968922258} a^{16} - \frac{694731492250881053966480832175}{126406575369112269681228968922258} a^{15} - \frac{74223228511289759704280233399}{84271050246074846454152645948172} a^{14} - \frac{45001053741014726427577874549}{7022587520506237204512720495681} a^{13} + \frac{3937538299392905281863368210173}{126406575369112269681228968922258} a^{12} + \frac{15738426197087651135851962811463}{63203287684556134840614484461129} a^{11} + \frac{19095302447797219369962602477411}{84271050246074846454152645948172} a^{10} + \frac{50612066796221257734285267767347}{252813150738224539362457937844516} a^{9} - \frac{29277967049226639582465662104195}{126406575369112269681228968922258} a^{8} + \frac{10522499604427964965898603094569}{63203287684556134840614484461129} a^{7} - \frac{22899085557753429700555435171591}{126406575369112269681228968922258} a^{6} - \frac{39438990972106757346945307751365}{252813150738224539362457937844516} a^{5} + \frac{3427495232607457237098006336484}{7022587520506237204512720495681} a^{4} - \frac{37032935260173323549745118896067}{126406575369112269681228968922258} a^{3} - \frac{55937632901002899913186887025433}{252813150738224539362457937844516} a^{2} + \frac{84770540801167036770475379127631}{252813150738224539362457937844516} a - \frac{39084864898688490202578035018311}{126406575369112269681228968922258}$
Class group and class number
$C_{6}\times C_{6}\times C_{1092}$, which has order $39312$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-14}) \), 3.3.8281.1, 3.3.8281.2, 3.3.169.1, \(\Q(\zeta_{7})^+\), 6.0.245772660224.4, 6.0.245772660224.3, 6.0.5015768576.6, 6.0.8605184.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |