Normalized defining polynomial
\( x^{18} + 2 x^{16} - 34 x^{15} + 27 x^{14} + 1190 x^{13} - 4103 x^{12} - 2290 x^{11} + 37658 x^{10} - 75750 x^{9} + 21096 x^{8} + 142780 x^{7} - 221370 x^{6} + 41510 x^{5} + 259490 x^{4} - 395850 x^{3} + 296875 x^{2} - 124650 x + 25475 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-148095344366237135984236865234375=-\,5^{11}\cdot 139^{5}\cdot 197^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 139, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{10} a^{14} + \frac{1}{5} a^{12} + \frac{1}{10} a^{11} + \frac{1}{5} a^{10} - \frac{3}{10} a^{8} - \frac{1}{5} a^{6} - \frac{1}{2} a^{5} + \frac{1}{10} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{15} + \frac{1}{5} a^{13} + \frac{1}{10} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{9} + \frac{3}{10} a^{7} + \frac{1}{10} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{110} a^{16} + \frac{3}{110} a^{14} + \frac{21}{110} a^{13} + \frac{19}{110} a^{12} + \frac{1}{110} a^{11} + \frac{19}{110} a^{10} + \frac{1}{11} a^{9} - \frac{2}{11} a^{8} - \frac{1}{22} a^{7} + \frac{2}{5} a^{6} + \frac{5}{11} a^{5} - \frac{39}{110} a^{4} - \frac{2}{11} a^{3} + \frac{1}{22} a^{2} + \frac{2}{11} a - \frac{1}{11}$, $\frac{1}{5644908969389808684631870221157813308830} a^{17} + \frac{12743197457323212521418466359957311624}{2822454484694904342315935110578906654415} a^{16} - \frac{22391875152906704074235828710360893171}{5644908969389808684631870221157813308830} a^{15} - \frac{688021135677857480977728464389304821}{2822454484694904342315935110578906654415} a^{14} - \frac{233607398864654960947732698978041032478}{2822454484694904342315935110578906654415} a^{13} + \frac{236213554846989529777342387541558184269}{1128981793877961736926374044231562661766} a^{12} - \frac{402567849751660348499077863832530055764}{2822454484694904342315935110578906654415} a^{11} + \frac{482968546150225869004871540916652117393}{5644908969389808684631870221157813308830} a^{10} - \frac{186712970318458653688634825874856021933}{5644908969389808684631870221157813308830} a^{9} - \frac{311955277643843201440831566132406609839}{5644908969389808684631870221157813308830} a^{8} + \frac{1315931575798637935543807583410188084886}{2822454484694904342315935110578906654415} a^{7} + \frac{718565637135353132320669167283313459893}{2822454484694904342315935110578906654415} a^{6} - \frac{16090741079693752054595593972736322813}{46652140242890980864726200174857961230} a^{5} - \frac{1370051098081792387141801727628138842582}{2822454484694904342315935110578906654415} a^{4} - \frac{200296265317879160455706985840411144679}{1128981793877961736926374044231562661766} a^{3} - \frac{11462962290514342367003902984049247065}{24543082475607863846225522700686144821} a^{2} + \frac{76977832187543324787561361736364384603}{564490896938980868463187022115781330883} a + \frac{432871690201543437987142772610173516487}{1128981793877961736926374044231562661766}$
Class group and class number
$C_{2}\times C_{90}$, which has order $180$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4683710.19939 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 70 conjugacy class representatives for t18n396 are not computed |
| Character table for t18n396 is not computed |
Intermediate fields
| 3.3.985.1, 6.0.674306375.1, 9.9.92322657333125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | $18$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $139$ | 139.6.0.1 | $x^{6} - x + 21$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 139.6.5.5 | $x^{6} + 8896$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 139.6.0.1 | $x^{6} - x + 21$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $197$ | $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |