Normalized defining polynomial
\( x^{18} - x^{17} + 168 x^{16} - 169 x^{15} + 10480 x^{14} - 10650 x^{13} + 308310 x^{12} - 300446 x^{11} + 4450991 x^{10} - 4301040 x^{9} + 31097213 x^{8} - 46920758 x^{7} + 129371239 x^{6} - 333953027 x^{5} + 309774585 x^{4} - 942303485 x^{3} + 910645155 x^{2} - 551296124 x + 3387073609 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-147303042689029667841882658956210597343=-\,19^{9}\cdot 37^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $131.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(703=19\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{703}(1,·)$, $\chi_{703}(514,·)$, $\chi_{703}(132,·)$, $\chi_{703}(455,·)$, $\chi_{703}(151,·)$, $\chi_{703}(398,·)$, $\chi_{703}(343,·)$, $\chi_{703}(474,·)$, $\chi_{703}(284,·)$, $\chi_{703}(419,·)$, $\chi_{703}(229,·)$, $\chi_{703}(305,·)$, $\chi_{703}(360,·)$, $\chi_{703}(552,·)$, $\chi_{703}(248,·)$, $\chi_{703}(571,·)$, $\chi_{703}(189,·)$, $\chi_{703}(702,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{337187} a^{16} + \frac{119214}{337187} a^{15} + \frac{74850}{337187} a^{14} - \frac{47312}{337187} a^{13} + \frac{34212}{337187} a^{12} + \frac{72344}{337187} a^{11} + \frac{100284}{337187} a^{10} - \frac{77712}{337187} a^{9} + \frac{146281}{337187} a^{8} - \frac{87488}{337187} a^{7} - \frac{45808}{337187} a^{6} - \frac{54573}{337187} a^{5} - \frac{48181}{337187} a^{4} + \frac{67558}{337187} a^{3} - \frac{87560}{337187} a^{2} - \frac{52402}{337187} a - \frac{1551}{10877}$, $\frac{1}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{17} + \frac{33060210665921508864692246503550832205241509132466234317537320149226635}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{16} - \frac{362997701397264998404063623277816383188754281764260814352959275093234083721}{1143218057835462401019587728073672783923994248378569369486730082316166967153} a^{15} + \frac{10080543555665956295397839339546659314386944083709754160831096482026602711405}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{14} + \frac{13789527680728525761925036700510432660739323222268667281864880350983334314943}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{13} + \frac{6028526839710190004600160582241225014944098565816619359578011099254593566452}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{12} + \frac{1542219455454366679837289247235053885755652711921089645432547182456234838240}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{11} + \frac{12281250057023756310692997672253393460267185825613312241408765619110791256980}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{10} - \frac{16977624660153843432227893393166925027566601923606917110695388098797463612266}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{9} - \frac{4153728912104497749975440509385733652288726928617118454036298815940095233411}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{8} - \frac{2991095152294822741095062854898816830715627184927932702442152819077488788126}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{7} + \frac{4436895566621111356114297998311459895459745598205277801034400007166696068197}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{6} + \frac{14039499286979555774843451085736814984280981527550226805801103284986411639561}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{5} + \frac{11558601236617305071745621561026409868403551073054528363762103306959073943943}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{4} - \frac{16541634121743331470578388920995492034995656478185154211605757794187577254237}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{3} - \frac{10205139415474954053306759760161667568710126209445403770367415819957955274492}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a^{2} + \frac{12234407364267713844423530114196297422202604685135214228280446048142746578997}{35439759792899334431607219570283856301643821699735650454088632551801175981743} a + \frac{399535389319233800801587347710965125090411867684732811862347045855100014526}{1143218057835462401019587728073672783923994248378569369486730082316166967153}$
Class group and class number
$C_{1154174}$, which has order $1154174$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 409151.3102125697 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-703}) \), 3.3.1369.1, 6.0.475630201063.1, 9.9.3512479453921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | R | $18$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| 37 | Data not computed | ||||||