/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^18 - 6*x^16 - 9*x^15 + 9*x^14 + 48*x^13 + 69*x^12 - 27*x^11 - 276*x^10 - 404*x^9 + 27*x^8 + 924*x^7 + 1521*x^6 + 1314*x^5 + 672*x^4 + 201*x^3 + 36*x^2 + 6*x + 1, 18, 42, [0, 9], -1457274373159131021312, [2, 3], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, 1/2*a^12 - 1/2*a^10 - 1/2*a^9 - 1/2*a^7 - 1/2*a^4 - 1/2*a^3 - 1/2, 1/2*a^13 - 1/2*a^11 - 1/2*a^10 - 1/2*a^8 - 1/2*a^5 - 1/2*a^4 - 1/2*a, 1/2*a^14 - 1/2*a^11 - 1/2*a^10 - 1/2*a^7 - 1/2*a^6 - 1/2*a^5 - 1/2*a^4 - 1/2*a^3 - 1/2*a^2 - 1/2, 1/2*a^15 - 1/2*a^11 - 1/2*a^10 - 1/2*a^9 - 1/2*a^8 - 1/2*a^6 - 1/2*a^5 - 1/2*a - 1/2, 1/2*a^16 - 1/2*a^11 - 1/2*a^6 - 1/2*a^4 - 1/2*a^3 - 1/2*a^2 - 1/2*a - 1/2, 1/1481050478*a^17 - 31261233/1481050478*a^16 + 97749567/740525239*a^15 - 144841908/740525239*a^14 - 126298878/740525239*a^13 - 268484643/1481050478*a^12 - 211221647/1481050478*a^11 + 158833517/740525239*a^10 - 257916227/740525239*a^9 - 293485191/740525239*a^8 + 739588675/1481050478*a^7 - 950007/1481050478*a^6 - 374529943/1481050478*a^5 + 122652077/740525239*a^4 + 139726884/740525239*a^3 - 272018934/740525239*a^2 - 282439695/740525239*a - 26915491/1481050478], 0, 1, [], 0, [ (2910291738)/(740525239)*a^(17) - (2708952559)/(740525239)*a^(16) - (15179109818)/(740525239)*a^(15) - (11540272446)/(740525239)*a^(14) + (37675837403)/(740525239)*a^(13) + (104376611930)/(740525239)*a^(12) + (100344864288)/(740525239)*a^(11) - (176730331408)/(740525239)*a^(10) - (639085860883)/(740525239)*a^(9) - (561690120635)/(740525239)*a^(8) + (632881240822)/(740525239)*a^(7) + (2096536706000)/(740525239)*a^(6) + (2401444633694)/(740525239)*a^(5) + (1492846372687)/(740525239)*a^(4) + (523825087501)/(740525239)*a^(3) + (113801137562)/(740525239)*a^(2) + (23606539891)/(740525239)*a + (3014265157)/(740525239) , (1603224902)/(740525239)*a^(17) - (1270516977)/(740525239)*a^(16) - (8421714927)/(740525239)*a^(15) - (16056750389)/(1481050478)*a^(14) + (40059992069)/(1481050478)*a^(13) + (60570530158)/(740525239)*a^(12) + (64878355824)/(740525239)*a^(11) - (89036484854)/(740525239)*a^(10) - (366938434909)/(740525239)*a^(9) - (736473166283)/(1481050478)*a^(8) + (601189250161)/(1481050478)*a^(7) + (2433437087987)/(1481050478)*a^(6) + (1511529593717)/(740525239)*a^(5) + (1019466636090)/(740525239)*a^(4) + (795350730255)/(1481050478)*a^(3) + (189422528249)/(1481050478)*a^(2) + (41862170139)/(1481050478)*a + (7970735319)/(1481050478) , (4603036525)/(1481050478)*a^(17) - (3323438099)/(1481050478)*a^(16) - (26143656245)/(1481050478)*a^(15) - (10541899015)/(740525239)*a^(14) + (60676572285)/(1481050478)*a^(13) + (177668677469)/(1481050478)*a^(12) + (176911138347)/(1481050478)*a^(11) - (138357866749)/(740525239)*a^(10) - (1084619264561)/(1481050478)*a^(9) - (504706770928)/(740525239)*a^(8) + (1011286212579)/(1481050478)*a^(7) + (1793250979543)/(740525239)*a^(6) + (4157720732599)/(1481050478)*a^(5) + (2557278148853)/(1481050478)*a^(4) + (419313893906)/(740525239)*a^(3) + (72075314170)/(740525239)*a^(2) + (11058251679)/(740525239)*a + (2078111566)/(740525239) , (5632882944)/(740525239)*a^(17) - (3323233997)/(740525239)*a^(16) - (64134381363)/(1481050478)*a^(15) - (62840818057)/(1481050478)*a^(14) + (140570743363)/(1481050478)*a^(13) + (228982825366)/(740525239)*a^(12) + (500873869539)/(1481050478)*a^(11) - (611951314079)/(1481050478)*a^(10) - (2755166487261)/(1481050478)*a^(9) - (1445946923785)/(740525239)*a^(8) + (2089980527281)/(1481050478)*a^(7) + (4603147197408)/(740525239)*a^(6) + (11573621604995)/(1481050478)*a^(5) + (3865953249146)/(740525239)*a^(4) + (2810645168575)/(1481050478)*a^(3) + (523027880197)/(1481050478)*a^(2) + (39517870786)/(740525239)*a + (8955978537)/(740525239) , (6670240987)/(740525239)*a^(17) - (7093004579)/(1481050478)*a^(16) - (38351596188)/(740525239)*a^(15) - (78843689127)/(1481050478)*a^(14) + (164118198099)/(1481050478)*a^(13) + (554678680325)/(1481050478)*a^(12) + (620409171331)/(1481050478)*a^(11) - (705078950841)/(1481050478)*a^(10) - (3321841057779)/(1481050478)*a^(9) - (3598754952785)/(1481050478)*a^(8) + (1182240998726)/(740525239)*a^(7) + (5575707268265)/(740525239)*a^(6) + (7139530835239)/(740525239)*a^(5) + (4821307648090)/(740525239)*a^(4) + (3480298708575)/(1481050478)*a^(3) + (292114698976)/(740525239)*a^(2) + (33124730671)/(740525239)*a + (19151909525)/(1481050478) , (5131982201)/(1481050478)*a^(17) - (982805711)/(740525239)*a^(16) - (14618262211)/(740525239)*a^(15) - (36820878315)/(1481050478)*a^(14) + (57986288579)/(1481050478)*a^(13) + (112807449163)/(740525239)*a^(12) + (138570918489)/(740525239)*a^(11) - (229900504549)/(1481050478)*a^(10) - (1327302746567)/(1481050478)*a^(9) - (1623855228805)/(1481050478)*a^(8) + (665373538249)/(1481050478)*a^(7) + (4503091439661)/(1481050478)*a^(6) + (6289771544331)/(1481050478)*a^(5) + (2302049511110)/(740525239)*a^(4) + (1841938176671)/(1481050478)*a^(3) + (185065658214)/(740525239)*a^(2) + (26505354471)/(740525239)*a + (6833730043)/(740525239) , (1101155999)/(1481050478)*a^(17) - (26294584)/(740525239)*a^(16) - (6689128561)/(1481050478)*a^(15) - (9757660317)/(1481050478)*a^(14) + (5578889737)/(740525239)*a^(13) + (27043822925)/(740525239)*a^(12) + (35925219818)/(740525239)*a^(11) - (39829375259)/(1481050478)*a^(10) - (155639168160)/(740525239)*a^(9) - (427244222691)/(1481050478)*a^(8) + (89377953179)/(1481050478)*a^(7) + (536527451812)/(740525239)*a^(6) + (1610975053727)/(1481050478)*a^(5) + (1224320709123)/(1481050478)*a^(4) + (488233677627)/(1481050478)*a^(3) + (40237036213)/(740525239)*a^(2) + (2614927424)/(740525239)*a + (2781753775)/(1481050478) , (1937907829)/(740525239)*a^(17) - (2839115859)/(1481050478)*a^(16) - (21205595481)/(1481050478)*a^(15) - (9363933041)/(740525239)*a^(14) + (47436659507)/(1481050478)*a^(13) + (149720556761)/(1481050478)*a^(12) + (158127207253)/(1481050478)*a^(11) - (214567847807)/(1481050478)*a^(10) - (451014242024)/(740525239)*a^(9) - (450509461006)/(740525239)*a^(8) + (728087384887)/(1481050478)*a^(7) + (1490395281116)/(740525239)*a^(6) + (1853635298679)/(740525239)*a^(5) + (2506984931215)/(1481050478)*a^(4) + (479465326224)/(740525239)*a^(3) + (203734610509)/(1481050478)*a^(2) + (28772475773)/(1481050478)*a + (4019643993)/(1481050478) ], 14503.1383261, [[x^2 - x + 1, 1], [x^3 - 3*x - 1, 1], [x^6 - x^3 + 1, 1], [x^9 - 3*x^8 + 3*x^7 + 6*x^6 - 6*x^5 - 3*x^4 + 9*x^3 - 3*x^2 - 6*x + 1, 1]]]