Properties

Label 18.0.14496852343...1083.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,19^{16}\cdot 43^{9}$
Root discriminant $89.83$
Ramified primes $19, 43$
Class number $228253$ (GRH)
Class group $[228253]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8337560089, -3332816606, 5108474617, -1795886216, 1455886589, -448042532, 252196324, -67479711, 29183672, -6708098, 2334770, -451187, 128861, -20109, 4715, -546, 103, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 7*x^17 + 103*x^16 - 546*x^15 + 4715*x^14 - 20109*x^13 + 128861*x^12 - 451187*x^11 + 2334770*x^10 - 6708098*x^9 + 29183672*x^8 - 67479711*x^7 + 252196324*x^6 - 448042532*x^5 + 1455886589*x^4 - 1795886216*x^3 + 5108474617*x^2 - 3332816606*x + 8337560089)
 
gp: K = bnfinit(x^18 - 7*x^17 + 103*x^16 - 546*x^15 + 4715*x^14 - 20109*x^13 + 128861*x^12 - 451187*x^11 + 2334770*x^10 - 6708098*x^9 + 29183672*x^8 - 67479711*x^7 + 252196324*x^6 - 448042532*x^5 + 1455886589*x^4 - 1795886216*x^3 + 5108474617*x^2 - 3332816606*x + 8337560089, 1)
 

Normalized defining polynomial

\( x^{18} - 7 x^{17} + 103 x^{16} - 546 x^{15} + 4715 x^{14} - 20109 x^{13} + 128861 x^{12} - 451187 x^{11} + 2334770 x^{10} - 6708098 x^{9} + 29183672 x^{8} - 67479711 x^{7} + 252196324 x^{6} - 448042532 x^{5} + 1455886589 x^{4} - 1795886216 x^{3} + 5108474617 x^{2} - 3332816606 x + 8337560089 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-144968523435705866934593522684771083=-\,19^{16}\cdot 43^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $89.83$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(817=19\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{817}(1,·)$, $\chi_{817}(130,·)$, $\chi_{817}(644,·)$, $\chi_{817}(517,·)$, $\chi_{817}(343,·)$, $\chi_{817}(386,·)$, $\chi_{817}(216,·)$, $\chi_{817}(558,·)$, $\chi_{817}(214,·)$, $\chi_{817}(87,·)$, $\chi_{817}(472,·)$, $\chi_{817}(42,·)$, $\chi_{817}(44,·)$, $\chi_{817}(429,·)$, $\chi_{817}(302,·)$, $\chi_{817}(560,·)$, $\chi_{817}(689,·)$, $\chi_{817}(85,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{1618253869516156476561948521682864225382107503223044525494007} a^{17} - \frac{64689984925412840844633111252082028338558407513713608650818}{1618253869516156476561948521682864225382107503223044525494007} a^{16} - \frac{472009836497952718848859418984239082707410612303350750342154}{1618253869516156476561948521682864225382107503223044525494007} a^{15} + \frac{741183413497472242841584718357693520078150582607493862857505}{1618253869516156476561948521682864225382107503223044525494007} a^{14} - \frac{317163385944709097486606051658141879231687254546258849474617}{1618253869516156476561948521682864225382107503223044525494007} a^{13} + \frac{556075055478824657192074735922048746024460434208367442519121}{1618253869516156476561948521682864225382107503223044525494007} a^{12} - \frac{556799253243380780296298705373693105649646338407711779597784}{1618253869516156476561948521682864225382107503223044525494007} a^{11} + \frac{343295047102995384555266164144864052483343082720578941101204}{1618253869516156476561948521682864225382107503223044525494007} a^{10} - \frac{634412412936372089352380978375419616199245791386073773561133}{1618253869516156476561948521682864225382107503223044525494007} a^{9} - \frac{549399958919221634222042510790861927677090681058756036384545}{1618253869516156476561948521682864225382107503223044525494007} a^{8} - \frac{575381015467493060624325763787975406168169474205284404354120}{1618253869516156476561948521682864225382107503223044525494007} a^{7} - \frac{30759813490010939914895280204606628263485226879246345914308}{1618253869516156476561948521682864225382107503223044525494007} a^{6} + \frac{641832169536837059278611253167580679308344215783733085919564}{1618253869516156476561948521682864225382107503223044525494007} a^{5} - \frac{132877406557510596807682353763874745205892467787014148710901}{1618253869516156476561948521682864225382107503223044525494007} a^{4} + \frac{340670943646344040360652888590662042852621743265886380231791}{1618253869516156476561948521682864225382107503223044525494007} a^{3} + \frac{643045451093722839362884968038986140669676991535174683110063}{1618253869516156476561948521682864225382107503223044525494007} a^{2} + \frac{108677305155246624520593265696408669094918239646883880875750}{1618253869516156476561948521682864225382107503223044525494007} a - \frac{627203127413407545883763954630939798982057884860588102363546}{1618253869516156476561948521682864225382107503223044525494007}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{228253}$, which has order $228253$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 22305.8950792 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-43}) \), 3.3.361.1, 6.0.10361431747.1, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ $18$ $18$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ R ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ R ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
19Data not computed
43Data not computed