Normalized defining polynomial
\( x^{18} - 5 x^{17} + 6 x^{16} - x^{15} + 25 x^{14} - 75 x^{13} + 50 x^{12} - 15 x^{11} + 155 x^{10} - 220 x^{9} + 111 x^{8} - 60 x^{7} + 146 x^{6} - 56 x^{5} + 50 x^{4} - 51 x^{3} + 40 x^{2} - 11 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-144884079282928466796875=-\,5^{15}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3107} a^{16} - \frac{1029}{3107} a^{15} - \frac{619}{3107} a^{14} + \frac{290}{3107} a^{13} + \frac{686}{3107} a^{12} + \frac{209}{3107} a^{11} - \frac{794}{3107} a^{10} + \frac{44}{239} a^{9} + \frac{1086}{3107} a^{8} + \frac{217}{3107} a^{7} + \frac{641}{3107} a^{6} - \frac{1472}{3107} a^{5} - \frac{77}{3107} a^{4} - \frac{406}{3107} a^{3} - \frac{630}{3107} a^{2} - \frac{1358}{3107} a + \frac{252}{3107}$, $\frac{1}{18927621722113} a^{17} - \frac{1527611716}{18927621722113} a^{16} - \frac{2416334585455}{18927621722113} a^{15} + \frac{230604422287}{18927621722113} a^{14} + \frac{6600015749889}{18927621722113} a^{13} - \frac{1536541397258}{18927621722113} a^{12} + \frac{5258117002717}{18927621722113} a^{11} - \frac{315342118983}{18927621722113} a^{10} - \frac{8479529438568}{18927621722113} a^{9} - \frac{364015870392}{1455970901701} a^{8} + \frac{829441538911}{18927621722113} a^{7} + \frac{7253862509468}{18927621722113} a^{6} - \frac{7571179474895}{18927621722113} a^{5} + \frac{6426159815769}{18927621722113} a^{4} + \frac{4337294645095}{18927621722113} a^{3} + \frac{1381081673164}{18927621722113} a^{2} + \frac{4614106419386}{18927621722113} a - \frac{6275728452681}{18927621722113}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7602.871760148733 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), \(\Q(\zeta_{7})^+\), 3.1.175.1, 6.0.2100875.1, 6.0.1071875.1, 9.3.12867859375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |