Normalized defining polynomial
\( x^{18} - 9 x^{17} + 36 x^{16} - 80 x^{15} + 114 x^{14} - 132 x^{13} + 151 x^{12} - 138 x^{11} + 99 x^{10} - 73 x^{9} + 30 x^{8} - 6 x^{7} + 25 x^{6} + 30 x^{5} + 48 x^{4} + 36 x^{3} + 21 x^{2} + 21 x + 7 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-144784752906623254803=-\,3^{21}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{7} a^{9} + \frac{1}{7} a^{7} - \frac{2}{7} a^{5} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} + \frac{1}{7} a^{8} - \frac{2}{7} a^{6} - \frac{1}{7} a^{4}$, $\frac{1}{7} a^{11} - \frac{3}{7} a^{7} + \frac{1}{7} a^{5} + \frac{1}{7} a^{3}$, $\frac{1}{7} a^{12} - \frac{3}{7} a^{8} + \frac{1}{7} a^{6} + \frac{1}{7} a^{4}$, $\frac{1}{7} a^{13} - \frac{3}{7} a^{7} + \frac{2}{7} a^{5} - \frac{3}{7} a^{3}$, $\frac{1}{49} a^{14} - \frac{3}{49} a^{13} - \frac{3}{49} a^{12} + \frac{2}{49} a^{11} - \frac{2}{49} a^{10} - \frac{1}{49} a^{9} + \frac{18}{49} a^{8} + \frac{9}{49} a^{7} - \frac{11}{49} a^{6} - \frac{16}{49} a^{5} + \frac{10}{49} a^{4} + \frac{12}{49} a^{3} + \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{49} a^{15} + \frac{2}{49} a^{13} - \frac{3}{49} a^{11} + \frac{1}{49} a^{9} - \frac{19}{49} a^{7} - \frac{1}{7} a^{6} + \frac{11}{49} a^{5} - \frac{1}{7} a^{4} + \frac{1}{49} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{49} a^{16} - \frac{1}{49} a^{13} + \frac{3}{49} a^{12} + \frac{3}{49} a^{11} - \frac{2}{49} a^{10} + \frac{2}{49} a^{9} - \frac{13}{49} a^{8} + \frac{24}{49} a^{7} - \frac{2}{49} a^{6} + \frac{18}{49} a^{5} - \frac{12}{49} a^{4} + \frac{18}{49} a^{3} - \frac{3}{7} a^{2} - \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{4739231} a^{17} - \frac{16281}{4739231} a^{16} + \frac{11127}{4739231} a^{15} - \frac{16}{115591} a^{14} - \frac{61263}{4739231} a^{13} + \frac{85390}{4739231} a^{12} + \frac{289382}{4739231} a^{11} + \frac{37192}{4739231} a^{10} + \frac{272815}{4739231} a^{9} - \frac{133810}{4739231} a^{8} + \frac{1565726}{4739231} a^{7} + \frac{1482849}{4739231} a^{6} + \frac{1214250}{4739231} a^{5} - \frac{22086}{115591} a^{4} - \frac{2354910}{4739231} a^{3} + \frac{54546}{677033} a^{2} - \frac{175684}{677033} a + \frac{200006}{677033}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{437}{2009} a^{17} + \frac{4208}{2009} a^{16} - \frac{18185}{2009} a^{15} + \frac{1090}{49} a^{14} - \frac{71384}{2009} a^{13} + \frac{89198}{2009} a^{12} - \frac{105437}{2009} a^{11} + \frac{108802}{2009} a^{10} - \frac{89284}{2009} a^{9} + \frac{68133}{2009} a^{8} - \frac{45176}{2009} a^{7} + \frac{21389}{2009} a^{6} - \frac{19764}{2009} a^{5} + \frac{27}{49} a^{4} - \frac{2241}{287} a^{3} - \frac{104}{287} a^{2} - \frac{314}{287} a - \frac{66}{41} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1570.26677096 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1323.1 x3, \(\Q(\zeta_{7})^+\), 6.0.5250987.1, 6.0.64827.1, 6.0.107163.1 x2, 9.3.2315685267.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.107163.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |