Normalized defining polynomial
\( x^{18} - 3 x^{17} + 18 x^{16} - 147 x^{15} + 822 x^{14} - 1827 x^{13} - 99 x^{12} + 6528 x^{11} + 29988 x^{10} - 74840 x^{9} - 40512 x^{8} + 12960 x^{7} + 1123200 x^{6} - 1445376 x^{5} - 829440 x^{4} + 1155072 x^{3} + 3244032 x^{2} - 4718592 x + 2097152 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-144702241276662140714874256260206223=-\,3^{30}\cdot 7^{15}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{7} + \frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{3}$, $\frac{1}{32} a^{10} + \frac{1}{32} a^{9} - \frac{1}{16} a^{8} + \frac{1}{32} a^{7} - \frac{1}{16} a^{6} + \frac{1}{32} a^{5} + \frac{5}{32} a^{4} - \frac{1}{4} a$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{3}{64} a^{8} - \frac{3}{64} a^{6} + \frac{7}{64} a^{5} + \frac{7}{32} a^{4} - \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{256} a^{12} - \frac{1}{256} a^{11} - \frac{3}{256} a^{9} - \frac{1}{16} a^{8} + \frac{13}{256} a^{7} - \frac{9}{256} a^{6} + \frac{31}{128} a^{5} - \frac{1}{16} a^{4} - \frac{7}{32} a^{3} - \frac{3}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{1024} a^{13} - \frac{1}{1024} a^{12} - \frac{3}{1024} a^{10} + \frac{3}{64} a^{9} - \frac{19}{1024} a^{8} - \frac{9}{1024} a^{7} + \frac{15}{512} a^{6} - \frac{9}{64} a^{5} - \frac{11}{128} a^{4} + \frac{9}{64} a^{3} - \frac{7}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{2048} a^{14} - \frac{1}{2048} a^{13} - \frac{3}{2048} a^{11} - \frac{1}{128} a^{10} - \frac{83}{2048} a^{9} + \frac{119}{2048} a^{8} - \frac{17}{1024} a^{7} - \frac{1}{128} a^{6} + \frac{45}{256} a^{5} + \frac{21}{128} a^{4} + \frac{1}{32} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{16384} a^{15} + \frac{1}{16384} a^{14} + \frac{3}{8192} a^{13} - \frac{11}{16384} a^{12} + \frac{21}{8192} a^{11} + \frac{53}{16384} a^{10} + \frac{81}{16384} a^{9} - \frac{163}{4096} a^{8} + \frac{25}{4096} a^{7} - \frac{17}{2048} a^{6} - \frac{13}{512} a^{5} + \frac{37}{512} a^{4} + \frac{1}{16} a^{3} + \frac{3}{8} a$, $\frac{1}{3080192} a^{16} + \frac{25}{3080192} a^{15} + \frac{95}{1540096} a^{14} + \frac{997}{3080192} a^{13} + \frac{1809}{1540096} a^{12} + \frac{18245}{3080192} a^{11} - \frac{30903}{3080192} a^{10} + \frac{21003}{770048} a^{9} + \frac{47721}{770048} a^{8} + \frac{5331}{385024} a^{7} - \frac{1947}{96256} a^{6} - \frac{2043}{96256} a^{5} + \frac{437}{12032} a^{4} + \frac{109}{752} a^{3} + \frac{169}{1504} a^{2} + \frac{45}{188} a + \frac{20}{47}$, $\frac{1}{442973151049705185616544881521983488} a^{17} + \frac{66664522973283381941343621101}{442973151049705185616544881521983488} a^{16} - \frac{4778171757764488345368041520015}{221486575524852592808272440760991744} a^{15} - \frac{86226405114035046971813507536531}{442973151049705185616544881521983488} a^{14} + \frac{24088531908696304142907871046483}{221486575524852592808272440760991744} a^{13} - \frac{144413271802055882402442284377699}{442973151049705185616544881521983488} a^{12} + \frac{2602699309111220237565331710310541}{442973151049705185616544881521983488} a^{11} - \frac{153977757562047347900249180341411}{27685821940606574101034055095123968} a^{10} + \frac{5966638923028243623310940492509457}{110743287762426296404136220380495872} a^{9} + \frac{1109114785576266986274906154003981}{55371643881213148202068110190247936} a^{8} - \frac{216393262508589926989580033365649}{6921455485151643525258513773780992} a^{7} + \frac{1184662322626604621782122322347101}{13842910970303287050517027547561984} a^{6} + \frac{562177809996362135215431955480355}{3460727742575821762629256886890496} a^{5} - \frac{107938423577647699844433298021513}{865181935643955440657314221722624} a^{4} + \frac{33490696404747124774189052161817}{216295483910988860164328555430656} a^{3} - \frac{21883462930404172475021202363523}{54073870977747215041082138857664} a^{2} - \frac{77484516966970461696343459}{13518467744436803760270534714416} a + \frac{792134581176108067842065558749}{1689808468054600470033816839302}$
Class group and class number
$C_{2}\times C_{2}\times C_{3192}$, which has order $12768$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 237885673.5279126 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.3969.1, 3.3.621.1, 6.0.110270727.2, 6.0.132274863.5, 9.9.20539533187176381.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.6.5.6 | $x^{6} + 224$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $23$ | 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.6.3.1 | $x^{6} - 46 x^{4} + 529 x^{2} - 194672$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 23.6.3.1 | $x^{6} - 46 x^{4} + 529 x^{2} - 194672$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |