Normalized defining polynomial
\( x^{18} - 384 x^{15} + 62017 x^{12} - 5353664 x^{9} + 258859585 x^{6} - 6593708032 x^{3} + 68719476736 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14393820147107503517964676172700690520050747=-\,3^{27}\cdot 19^{6}\cdot 5851^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $249.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19, 5851$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{386} a^{9} + \frac{1}{386} a^{6} - \frac{65}{386} a^{3} - \frac{25}{193}$, $\frac{1}{386} a^{10} + \frac{1}{386} a^{7} - \frac{65}{386} a^{4} - \frac{25}{193} a$, $\frac{1}{386} a^{11} + \frac{1}{386} a^{8} - \frac{65}{386} a^{5} - \frac{25}{193} a^{2}$, $\frac{1}{386} a^{12} - \frac{33}{193} a^{6} + \frac{15}{386} a^{3} + \frac{25}{193}$, $\frac{1}{12352} a^{13} + \frac{513}{12352} a^{7} - \frac{45}{193} a^{4} + \frac{2945}{12352} a$, $\frac{1}{790528} a^{14} - \frac{3}{6176} a^{11} + \frac{86593}{790528} a^{8} - \frac{5059}{12352} a^{5} - \frac{187839}{790528} a^{2}$, $\frac{1}{1413438767104} a^{15} + \frac{946097}{849422336} a^{12} + \frac{543617601}{1413438767104} a^{9} - \frac{8678457027}{22084980736} a^{6} - \frac{52860622331}{108726059008} a^{3} + \frac{958050}{5391841}$, $\frac{1}{90460081094656} a^{16} - \frac{1254479}{54363029504} a^{13} - \frac{69029793215}{90460081094656} a^{10} - \frac{248924141251}{1413438767104} a^{7} + \frac{290781325829}{6958467776512} a^{4} + \frac{3382425}{86269456} a$, $\frac{1}{5789445190057984} a^{17} - \frac{1254479}{3479233888256} a^{14} + \frac{2040143082049}{5789445190057984} a^{11} - \frac{3042845849283}{90460081094656} a^{8} - \frac{107673631921659}{445341937696768} a^{5} - \frac{183460231}{5521245184} a^{2}$
Class group and class number
$C_{6}\times C_{6}\times C_{18}\times C_{126}$, which has order $81648$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{321793}{45230040547328} a^{17} + \frac{62719}{27181514752} a^{14} - \frac{13798611777}{45230040547328} a^{11} + \frac{14384620963}{706719383552} a^{8} - \frac{2365383997189}{3479233888256} a^{5} + \frac{197183351199}{22084980736} a^{2} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22452484437.4967 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2\times S_3$ (as 18T17):
| A solvable group of order 54 |
| The 27 conjugacy class representatives for $C_3^2\times S_3$ |
| Character table for $C_3^2\times S_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{9})\), 6.0.243253271960163.1, Deg 6, 6.0.333680757147.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 5851 | Data not computed | ||||||