Normalized defining polynomial
\( x^{18} - 9 x^{17} + 63 x^{16} - 279 x^{15} + 1026 x^{14} - 3024 x^{13} + 8037 x^{12} - 18900 x^{11} + 38367 x^{10} - 63180 x^{9} + 86670 x^{8} - 99792 x^{7} + 70551 x^{6} + 84807 x^{5} - 319788 x^{4} + 302292 x^{3} + 122472 x^{2} - 418446 x + 226233 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1436703660250682047468690747392=-\,2^{12}\cdot 3^{31}\cdot 7^{6}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4}$, $\frac{1}{3} a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{9} a^{8}$, $\frac{1}{9} a^{9}$, $\frac{1}{9} a^{10}$, $\frac{1}{27} a^{11}$, $\frac{1}{189} a^{12} + \frac{1}{189} a^{11} + \frac{2}{63} a^{9} + \frac{2}{63} a^{8} + \frac{1}{7} a^{6} + \frac{1}{7} a^{5} - \frac{1}{7} a^{3} - \frac{1}{7} a^{2}$, $\frac{1}{189} a^{13} - \frac{1}{189} a^{11} + \frac{2}{63} a^{10} - \frac{2}{63} a^{8} + \frac{1}{7} a^{7} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} + \frac{1}{7} a^{2}$, $\frac{1}{189} a^{14} - \frac{1}{21} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{567} a^{15} - \frac{1}{63} a^{9} + \frac{2}{7} a^{3}$, $\frac{1}{128709} a^{16} - \frac{50}{128709} a^{15} - \frac{2}{14301} a^{14} - \frac{5}{4767} a^{13} - \frac{1}{4767} a^{12} - \frac{538}{42903} a^{11} + \frac{5}{2043} a^{10} + \frac{97}{4767} a^{9} - \frac{533}{14301} a^{8} - \frac{338}{4767} a^{7} + \frac{131}{1589} a^{6} - \frac{53}{4767} a^{5} + \frac{131}{1589} a^{4} + \frac{80}{227} a^{3} - \frac{527}{1589} a^{2} - \frac{80}{227} a - \frac{29}{227}$, $\frac{1}{844389427898275478588313} a^{17} - \frac{31476220322987285}{93821047544252830954257} a^{16} + \frac{23338746084647837666}{93821047544252830954257} a^{15} + \frac{566726283135299553662}{281463142632758492862771} a^{14} + \frac{281510812333998830248}{281463142632758492862771} a^{13} + \frac{79536952807356379708}{31273682514750943651419} a^{12} - \frac{168850929235211113820}{13403006792036118707751} a^{11} + \frac{474489946472619752855}{13403006792036118707751} a^{10} + \frac{191671109684043953011}{4467668930678706235917} a^{9} - \frac{3841667314217289881617}{93821047544252830954257} a^{8} + \frac{1227000713326482010822}{31273682514750943651419} a^{7} - \frac{1674592289971008200474}{10424560838250314550473} a^{6} - \frac{668786181291284569064}{31273682514750943651419} a^{5} + \frac{1094954725233472882831}{10424560838250314550473} a^{4} - \frac{8497902010372481732}{17005808871533955221} a^{3} + \frac{138070497543042302858}{1489222976892902078639} a^{2} - \frac{9818458333505519440}{1489222976892902078639} a - \frac{9501782206389098398}{212746139556128868377}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{359265602}{71518409003727} a^{17} - \frac{8101148798}{71518409003727} a^{16} + \frac{17776632224}{23839469667909} a^{15} - \frac{103153815865}{23839469667909} a^{14} + \frac{355867171985}{23839469667909} a^{13} - \frac{1182326109190}{23839469667909} a^{12} + \frac{138852447529}{1135212841329} a^{11} - \frac{117727525826}{378404280443} a^{10} + \frac{2136814036456}{3405638523987} a^{9} - \frac{2764341297605}{2648829963101} a^{8} + \frac{3441885567094}{2648829963101} a^{7} - \frac{3928609620375}{2648829963101} a^{6} + \frac{3023810284260}{2648829963101} a^{5} + \frac{5147827074690}{2648829963101} a^{4} - \frac{19840986799568}{2648829963101} a^{3} + \frac{281533205091}{54057754349} a^{2} + \frac{2546147577405}{378404280443} a - \frac{403873996910}{54057754349} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 246972334.17984632 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.756.1, 6.0.3326427.1, 6.0.1714608.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $13$ | 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.4.1 | $x^{6} + 39 x^{3} + 676$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |