Normalized defining polynomial
\( x^{18} + 190 x^{16} + 15200 x^{14} + 665000 x^{12} + 17290000 x^{10} + 271700000 x^{8} + 2508000000 x^{6} + 12540000000 x^{4} + 28500000000 x^{2} + 19000000000 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1436650532447139184230793216000000000=-\,2^{27}\cdot 5^{9}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(760=2^{3}\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{760}(1,·)$, $\chi_{760}(69,·)$, $\chi_{760}(321,·)$, $\chi_{760}(201,·)$, $\chi_{760}(269,·)$, $\chi_{760}(109,·)$, $\chi_{760}(81,·)$, $\chi_{760}(469,·)$, $\chi_{760}(441,·)$, $\chi_{760}(29,·)$, $\chi_{760}(161,·)$, $\chi_{760}(681,·)$, $\chi_{760}(749,·)$, $\chi_{760}(509,·)$, $\chi_{760}(481,·)$, $\chi_{760}(629,·)$, $\chi_{760}(121,·)$, $\chi_{760}(189,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{10} a^{2}$, $\frac{1}{10} a^{3}$, $\frac{1}{100} a^{4}$, $\frac{1}{100} a^{5}$, $\frac{1}{1000} a^{6}$, $\frac{1}{1000} a^{7}$, $\frac{1}{10000} a^{8}$, $\frac{1}{10000} a^{9}$, $\frac{1}{100000} a^{10}$, $\frac{1}{100000} a^{11}$, $\frac{1}{1000000} a^{12}$, $\frac{1}{1000000} a^{13}$, $\frac{1}{10000000} a^{14}$, $\frac{1}{10000000} a^{15}$, $\frac{1}{100000000} a^{16}$, $\frac{1}{100000000} a^{17}$
Class group and class number
$C_{38}\times C_{23978}$, which has order $911164$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.895079162343 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-190}) \), 3.3.361.1, 6.0.158470336000.4, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | $18$ | R | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 19 | Data not computed | ||||||