Normalized defining polynomial
\( x^{18} - 30 x^{15} + 522 x^{14} + 1044 x^{13} + 6729 x^{12} - 5040 x^{11} + 42570 x^{10} - 132088 x^{9} + 322596 x^{8} - 1551690 x^{7} + 2671395 x^{6} - 4740084 x^{5} + 13758246 x^{4} - 18105654 x^{3} + 11021922 x^{2} - 6170886 x + 2904619 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1435015865868157212700925134821666816=-\,2^{12}\cdot 3^{45}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} + \frac{1}{6}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} + \frac{1}{6} a$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} + \frac{1}{6} a^{2}$, $\frac{1}{6} a^{12} - \frac{1}{3} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{3} a^{4} - \frac{1}{2} a$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{13} + \frac{1}{18} a^{12} + \frac{1}{18} a^{11} - \frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{18} a^{5} - \frac{1}{18} a^{4} + \frac{1}{18} a^{3} + \frac{2}{9} a^{2} - \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{12} + \frac{1}{18} a^{9} + \frac{7}{18} a^{6} + \frac{1}{9} a^{3} - \frac{1}{9}$, $\frac{1}{684} a^{16} - \frac{11}{684} a^{15} + \frac{5}{342} a^{14} + \frac{55}{684} a^{13} - \frac{5}{228} a^{12} - \frac{8}{171} a^{11} + \frac{1}{114} a^{10} - \frac{17}{342} a^{9} - \frac{47}{114} a^{8} - \frac{29}{171} a^{7} - \frac{139}{342} a^{6} + \frac{70}{171} a^{5} + \frac{337}{684} a^{4} + \frac{5}{12} a^{3} + \frac{40}{171} a^{2} - \frac{27}{76} a + \frac{173}{684}$, $\frac{1}{2816592895852035049506953516341051606728743198756039412} a^{17} + \frac{682569795982737250126246873421930841550477691060989}{2816592895852035049506953516341051606728743198756039412} a^{16} - \frac{881692890618829978942420516993904779222968685607806}{704148223963008762376738379085262901682185799689009853} a^{15} - \frac{31963497501860891509781177275130862045861204198901967}{2816592895852035049506953516341051606728743198756039412} a^{14} - \frac{7836473517034240600699466945709871455862704523615591}{312954766205781672167439279593450178525415910972893268} a^{13} + \frac{18173781535371247455690887856406035786065878281536678}{234716074654336254125579459695087633894061933229669951} a^{12} - \frac{15500240698866369040077988524828953046786977939442433}{469432149308672508251158919390175267788123866459339902} a^{11} + \frac{38116479201080231963130279744986143607976768236469644}{704148223963008762376738379085262901682185799689009853} a^{10} - \frac{31769762771729473569924044610352734267853936620273595}{1408296447926017524753476758170525803364371599378019706} a^{9} + \frac{253431949870624692340497971626674829177841845568260720}{704148223963008762376738379085262901682185799689009853} a^{8} - \frac{5119060853272876450787406747371533344247076891539808}{704148223963008762376738379085262901682185799689009853} a^{7} - \frac{3591602710091935381413537805196892884904392465092942}{704148223963008762376738379085262901682185799689009853} a^{6} - \frac{1194750343435124867387446977656927325427255320106806359}{2816592895852035049506953516341051606728743198756039412} a^{5} - \frac{85373579983116489685163077013325857883009573970338839}{938864298617345016502317838780350535576247732918679804} a^{4} - \frac{18559356952419216133055571386303411515258494121488541}{469432149308672508251158919390175267788123866459339902} a^{3} - \frac{430040121924889654215756175571355622962417002975769319}{938864298617345016502317838780350535576247732918679804} a^{2} - \frac{1129884026578098808585924480674706084910370669747076993}{2816592895852035049506953516341051606728743198756039412} a + \frac{71731820509931383527611615402147329312409422097647966}{704148223963008762376738379085262901682185799689009853}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16724342128.232887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-51}) \), 3.1.243.1, 6.0.870323211.2, 9.1.2008387814976.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |