Normalized defining polynomial
\( x^{18} + 12 x^{16} + 96 x^{14} + 531 x^{12} + 1974 x^{10} + 5124 x^{8} + 9261 x^{6} + 10584 x^{4} + 6174 x^{2} + 1029 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-143408083757073425869307904=-\,2^{22}\cdot 3^{25}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} - \frac{2}{7} a^{8} - \frac{2}{7} a^{6} - \frac{1}{7} a^{4}$, $\frac{1}{7} a^{11} - \frac{2}{7} a^{9} - \frac{2}{7} a^{7} - \frac{1}{7} a^{5}$, $\frac{1}{14} a^{12} - \frac{1}{14} a^{11} - \frac{1}{14} a^{10} + \frac{1}{7} a^{9} + \frac{3}{14} a^{8} - \frac{5}{14} a^{7} + \frac{2}{7} a^{6} + \frac{1}{14} a^{5} - \frac{1}{14} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{14} a^{13} - \frac{1}{14} a^{10} + \frac{1}{14} a^{9} + \frac{1}{7} a^{8} - \frac{5}{14} a^{7} - \frac{5}{14} a^{6} - \frac{1}{7} a^{5} + \frac{1}{14} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{98} a^{14} - \frac{1}{49} a^{12} - \frac{1}{14} a^{11} + \frac{5}{98} a^{10} + \frac{1}{7} a^{9} + \frac{13}{98} a^{8} - \frac{5}{14} a^{7} - \frac{2}{7} a^{6} + \frac{1}{14} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{98} a^{15} - \frac{1}{49} a^{13} - \frac{1}{49} a^{11} - \frac{1}{14} a^{10} + \frac{27}{98} a^{9} + \frac{1}{7} a^{8} + \frac{5}{14} a^{7} - \frac{5}{14} a^{6} - \frac{3}{7} a^{5} + \frac{1}{14} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{7971908} a^{16} - \frac{1}{196} a^{15} - \frac{8152}{1992977} a^{14} - \frac{5}{196} a^{13} + \frac{277471}{7971908} a^{12} - \frac{3}{49} a^{11} + \frac{35978}{1992977} a^{10} - \frac{3}{98} a^{9} - \frac{169299}{569422} a^{8} + \frac{1}{7} a^{7} - \frac{23097}{284711} a^{6} + \frac{5}{14} a^{5} - \frac{90071}{1138844} a^{4} + \frac{1}{4} a^{3} + \frac{33531}{81346} a^{2} - \frac{1}{4} a - \frac{46355}{162692}$, $\frac{1}{7971908} a^{17} + \frac{8065}{7971908} a^{15} - \frac{1}{196} a^{14} - \frac{44293}{3985954} a^{13} - \frac{5}{196} a^{12} - \frac{2586}{40673} a^{11} - \frac{3}{49} a^{10} - \frac{208941}{3985954} a^{9} - \frac{3}{98} a^{8} + \frac{238517}{569422} a^{7} + \frac{1}{7} a^{6} - \frac{171417}{1138844} a^{5} + \frac{5}{14} a^{4} - \frac{54957}{162692} a^{3} + \frac{1}{4} a^{2} - \frac{2841}{81346} a - \frac{1}{4}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 225010.312142 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18432 |
| The 120 conjugacy class representatives for t18n623 are not computed |
| Character table for t18n623 is not computed |
Intermediate fields
| 3.1.108.1, 3.3.756.1, 9.3.11666192832.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.10.5 | $x^{6} + 2 x^{5} + 6$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ |
| 2.12.12.27 | $x^{12} - 18 x^{10} + 171 x^{8} + 116 x^{6} - 313 x^{4} + 190 x^{2} + 877$ | $6$ | $2$ | $12$ | 12T30 | $[4/3, 4/3]_{3}^{4}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.12.9.1 | $x^{12} - 49 x^{4} + 686$ | $4$ | $3$ | $9$ | $D_4 \times C_3$ | $[\ ]_{4}^{6}$ | |