Normalized defining polynomial
\( x^{18} - 3 x^{17} + 51 x^{16} - 145 x^{15} + 1377 x^{14} - 4017 x^{13} + 24968 x^{12} - 71760 x^{11} + 328884 x^{10} - 886259 x^{9} + 3240978 x^{8} - 7306587 x^{7} + 21644553 x^{6} - 36408891 x^{5} + 88661442 x^{4} - 102732573 x^{3} + 217719351 x^{2} - 173351430 x + 337293181 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14219059916154378364791264791424459=-\,3^{24}\cdot 7^{15}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(819=3^{2}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{819}(1,·)$, $\chi_{819}(454,·)$, $\chi_{819}(649,·)$, $\chi_{819}(781,·)$, $\chi_{819}(79,·)$, $\chi_{819}(274,·)$, $\chi_{819}(727,·)$, $\chi_{819}(220,·)$, $\chi_{819}(352,·)$, $\chi_{819}(547,·)$, $\chi_{819}(103,·)$, $\chi_{819}(235,·)$, $\chi_{819}(493,·)$, $\chi_{819}(625,·)$, $\chi_{819}(181,·)$, $\chi_{819}(376,·)$, $\chi_{819}(508,·)$, $\chi_{819}(766,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{97} a^{12} + \frac{19}{97} a^{11} + \frac{15}{97} a^{10} + \frac{34}{97} a^{9} - \frac{2}{97} a^{8} + \frac{23}{97} a^{7} - \frac{27}{97} a^{6} + \frac{26}{97} a^{5} + \frac{16}{97} a^{4} + \frac{16}{97} a^{3} - \frac{2}{97} a^{2} + \frac{3}{97} a + \frac{32}{97}$, $\frac{1}{97} a^{13} + \frac{42}{97} a^{11} + \frac{40}{97} a^{10} + \frac{31}{97} a^{9} - \frac{36}{97} a^{8} + \frac{21}{97} a^{7} - \frac{43}{97} a^{6} + \frac{7}{97} a^{5} + \frac{3}{97} a^{4} - \frac{15}{97} a^{3} + \frac{41}{97} a^{2} - \frac{25}{97} a - \frac{26}{97}$, $\frac{1}{97} a^{14} + \frac{18}{97} a^{11} - \frac{17}{97} a^{10} - \frac{9}{97} a^{9} + \frac{8}{97} a^{8} - \frac{39}{97} a^{7} - \frac{23}{97} a^{6} - \frac{22}{97} a^{5} - \frac{8}{97} a^{4} + \frac{48}{97} a^{3} - \frac{38}{97} a^{2} + \frac{42}{97} a + \frac{14}{97}$, $\frac{1}{97} a^{15} + \frac{29}{97} a^{11} + \frac{12}{97} a^{10} - \frac{22}{97} a^{9} - \frac{3}{97} a^{8} + \frac{48}{97} a^{7} - \frac{21}{97} a^{6} + \frac{9}{97} a^{5} - \frac{46}{97} a^{4} - \frac{35}{97} a^{3} - \frac{19}{97} a^{2} - \frac{40}{97} a + \frac{6}{97}$, $\frac{1}{97} a^{16} + \frac{43}{97} a^{11} + \frac{28}{97} a^{10} - \frac{19}{97} a^{9} + \frac{9}{97} a^{8} - \frac{9}{97} a^{7} + \frac{16}{97} a^{6} - \frac{24}{97} a^{5} - \frac{14}{97} a^{4} + \frac{2}{97} a^{3} + \frac{18}{97} a^{2} + \frac{16}{97} a + \frac{42}{97}$, $\frac{1}{3130892788963172701507875878277895708666331625983941873723} a^{17} - \frac{14277714492780780505173877161047681528258930514285342394}{3130892788963172701507875878277895708666331625983941873723} a^{16} + \frac{2703141394959332422111931062959516064719589442952171973}{3130892788963172701507875878277895708666331625983941873723} a^{15} + \frac{4151269626118213507966464677819226666374182263181000786}{3130892788963172701507875878277895708666331625983941873723} a^{14} + \frac{10119470104499319692416621573358044762087089820244268552}{3130892788963172701507875878277895708666331625983941873723} a^{13} - \frac{13456221353968869006246294206695440337500640599243557889}{3130892788963172701507875878277895708666331625983941873723} a^{12} - \frac{946581834914187022892711621917207169302538845526348186731}{3130892788963172701507875878277895708666331625983941873723} a^{11} + \frac{1361728349770676353243377106001145272647586811492736043936}{3130892788963172701507875878277895708666331625983941873723} a^{10} - \frac{500007090041938670901011998269937893708160830428028902530}{3130892788963172701507875878277895708666331625983941873723} a^{9} - \frac{11451074173584882636651611600623383069343222888227662885}{3130892788963172701507875878277895708666331625983941873723} a^{8} - \frac{65431170169714652866251902768399585893603820421232564888}{3130892788963172701507875878277895708666331625983941873723} a^{7} - \frac{175054433275796135358070029729331321331513123815078463203}{3130892788963172701507875878277895708666331625983941873723} a^{6} - \frac{394261239910992745875027978966260985904947621213804732602}{3130892788963172701507875878277895708666331625983941873723} a^{5} - \frac{130555862801159363486364351008850310914197001252740986269}{3130892788963172701507875878277895708666331625983941873723} a^{4} - \frac{308509183704068406329651451866476538834140854126612976681}{3130892788963172701507875878277895708666331625983941873723} a^{3} + \frac{1114536516730583682416519346910461934121561657443066669412}{3130892788963172701507875878277895708666331625983941873723} a^{2} - \frac{783935829067288807318271382106418318872348569822794472373}{3130892788963172701507875878277895708666331625983941873723} a + \frac{1078273858643719552700747755795354474407324939917582398772}{3130892788963172701507875878277895708666331625983941873723}$
Class group and class number
$C_{2}\times C_{2}\times C_{8246}$, which has order $32984$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-91}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 3.3.3969.1, 3.3.3969.2, 6.0.4944179331.10, 6.0.36924979.1, 6.0.242264787219.4, 6.0.242264787219.5, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $13$ | 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |