Normalized defining polynomial
\( x^{18} - x^{17} + 84 x^{16} - 83 x^{15} + 2190 x^{14} - 2100 x^{13} + 20098 x^{12} + 32172 x^{11} + 32703 x^{10} + 186817 x^{9} + 143808 x^{8} + 341949 x^{7} + 2032311 x^{6} - 1063041 x^{5} + 10119676 x^{4} - 10269721 x^{3} + 19805226 x^{2} - 17042844 x + 31109176 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1418619440298203088067262326207274631=-\,3^{9}\cdot 7^{15}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $101.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(399=3\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{399}(64,·)$, $\chi_{399}(1,·)$, $\chi_{399}(172,·)$, $\chi_{399}(398,·)$, $\chi_{399}(335,·)$, $\chi_{399}(227,·)$, $\chi_{399}(277,·)$, $\chi_{399}(278,·)$, $\chi_{399}(122,·)$, $\chi_{399}(163,·)$, $\chi_{399}(164,·)$, $\chi_{399}(293,·)$, $\chi_{399}(106,·)$, $\chi_{399}(235,·)$, $\chi_{399}(236,·)$, $\chi_{399}(121,·)$, $\chi_{399}(58,·)$, $\chi_{399}(341,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} + \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{16} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} + \frac{1}{8} a^{5} - \frac{1}{16} a^{3} + \frac{5}{16} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{16} a^{15} - \frac{1}{8} a^{12} + \frac{1}{16} a^{11} - \frac{1}{8} a^{10} + \frac{3}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{4} a^{7} - \frac{3}{8} a^{6} - \frac{1}{8} a^{5} + \frac{3}{16} a^{4} - \frac{1}{16} a^{2} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{97966480} a^{16} - \frac{2078163}{97966480} a^{15} + \frac{738771}{24491620} a^{14} + \frac{763071}{48983240} a^{13} - \frac{423193}{97966480} a^{12} + \frac{9780919}{97966480} a^{11} - \frac{2082707}{97966480} a^{10} - \frac{53103}{433480} a^{9} + \frac{6291671}{97966480} a^{8} - \frac{6340891}{48983240} a^{7} - \frac{393419}{6122905} a^{6} + \frac{23422729}{97966480} a^{5} + \frac{26932227}{97966480} a^{4} + \frac{47231771}{97966480} a^{3} - \frac{45350023}{97966480} a^{2} - \frac{13552563}{48983240} a + \frac{419787}{12245810}$, $\frac{1}{32101996230792575907945960754994250590094555822252433600} a^{17} - \frac{66876825595674657969701780111085476597238471187}{32101996230792575907945960754994250590094555822252433600} a^{16} + \frac{301615837830384146359144336822328583617254320790112733}{16050998115396287953972980377497125295047277911126216800} a^{15} + \frac{418240481358884070795017429770090376359636699433055941}{32101996230792575907945960754994250590094555822252433600} a^{14} - \frac{206524891727837242290661593822596564190655795445813717}{4012749528849071988493245094374281323761819477781554200} a^{13} - \frac{82718050525132849240158046431108868710784906454043919}{2006374764424535994246622547187140661880909738890777100} a^{12} + \frac{1575725067210648382922050573822273572271070615608301871}{16050998115396287953972980377497125295047277911126216800} a^{11} - \frac{38366269903469590928393271140035208319346252718207341}{802549905769814397698649018874856264752363895556310840} a^{10} - \frac{7586730276586194801238889400545514949863638164681484057}{32101996230792575907945960754994250590094555822252433600} a^{9} + \frac{4434729191176458295605558142892750288313951049273033519}{32101996230792575907945960754994250590094555822252433600} a^{8} + \frac{2653409607875723215132247473377849873332008401809112637}{16050998115396287953972980377497125295047277911126216800} a^{7} - \frac{2098131897508642319122987312922278757022167379828525803}{6420399246158515181589192150998850118018911164450486720} a^{6} - \frac{950661476725234880229034588151647931668155008899378499}{32101996230792575907945960754994250590094555822252433600} a^{5} + \frac{11307223517343856999989373596993185070584836120390802773}{32101996230792575907945960754994250590094555822252433600} a^{4} - \frac{3449628103462744890898195707090667896188898689751104701}{16050998115396287953972980377497125295047277911126216800} a^{3} - \frac{2881094540543025398177288970653360560744880928199759849}{32101996230792575907945960754994250590094555822252433600} a^{2} - \frac{229964148039677621509803406067240854596722597082385753}{1605099811539628795397298037749712529504727791112621680} a - \frac{2277188540204015674876104444624079988458250575850065521}{8025499057698143976986490188748562647523638955563108400}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{3416}$, which has order $109312$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 833965.2438558349 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-399}) \), 3.3.361.1, 3.3.17689.1, 3.3.17689.2, \(\Q(\zeta_{7})^+\), 6.0.22931152839.1, 6.0.1123626489111.1, 6.0.1123626489111.2, 6.0.3112538751.2, 9.9.5534900853769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19 | Data not computed | ||||||