Normalized defining polynomial
\( x^{18} - 6 x^{17} + 39 x^{16} - 146 x^{15} + 609 x^{14} - 1806 x^{13} + 5568 x^{12} - 12930 x^{11} + 30840 x^{10} - 58068 x^{9} + 121791 x^{8} - 196452 x^{7} + 321467 x^{6} - 380358 x^{5} + 651183 x^{4} - 775582 x^{3} + 1625814 x^{2} - 1190916 x + 1075033 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14166424145858741301073711988736=-\,2^{27}\cdot 3^{27}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(504=2^{3}\cdot 3^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{504}(1,·)$, $\chi_{504}(197,·)$, $\chi_{504}(193,·)$, $\chi_{504}(457,·)$, $\chi_{504}(337,·)$, $\chi_{504}(149,·)$, $\chi_{504}(25,·)$, $\chi_{504}(221,·)$, $\chi_{504}(389,·)$, $\chi_{504}(289,·)$, $\chi_{504}(485,·)$, $\chi_{504}(169,·)$, $\chi_{504}(365,·)$, $\chi_{504}(29,·)$, $\chi_{504}(53,·)$, $\chi_{504}(361,·)$, $\chi_{504}(121,·)$, $\chi_{504}(317,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4}$, $\frac{1}{20} a^{13} - \frac{1}{20} a^{12} - \frac{1}{10} a^{11} + \frac{1}{10} a^{10} + \frac{3}{20} a^{9} + \frac{3}{20} a^{8} + \frac{1}{10} a^{7} - \frac{1}{10} a^{6} + \frac{1}{5} a^{5} + \frac{1}{10} a^{4} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2} - \frac{9}{20} a + \frac{3}{20}$, $\frac{1}{20} a^{14} + \frac{1}{10} a^{12} - \frac{1}{4} a^{10} - \frac{1}{5} a^{9} + \frac{1}{10} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{4} - \frac{2}{5} a^{3} + \frac{1}{4} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{18740} a^{15} + \frac{163}{18740} a^{14} + \frac{203}{18740} a^{13} - \frac{365}{3748} a^{12} + \frac{1423}{18740} a^{11} + \frac{3103}{18740} a^{10} + \frac{4551}{18740} a^{9} + \frac{743}{18740} a^{8} - \frac{1533}{9370} a^{7} + \frac{341}{1874} a^{6} + \frac{1578}{4685} a^{5} + \frac{1506}{4685} a^{4} + \frac{2229}{18740} a^{3} + \frac{2713}{18740} a^{2} + \frac{331}{18740} a + \frac{8097}{18740}$, $\frac{1}{118033625341520260} a^{16} - \frac{602999449146}{29508406335380065} a^{15} - \frac{649084387402273}{29508406335380065} a^{14} + \frac{2504658013890943}{118033625341520260} a^{13} + \frac{3928593368880753}{59016812670760130} a^{12} + \frac{1801643315745406}{29508406335380065} a^{11} + \frac{7124606767720202}{29508406335380065} a^{10} + \frac{6055190640889429}{118033625341520260} a^{9} - \frac{3149618666759783}{23606725068304052} a^{8} - \frac{481535072100687}{5901681267076013} a^{7} - \frac{401307874781767}{59016812670760130} a^{6} + \frac{22352515028828061}{59016812670760130} a^{5} - \frac{48252925218379031}{118033625341520260} a^{4} - \frac{3992029313959224}{29508406335380065} a^{3} - \frac{28500590107488547}{59016812670760130} a^{2} + \frac{58880684534433793}{118033625341520260} a - \frac{52841668072239879}{118033625341520260}$, $\frac{1}{74293664600285527258070900} a^{17} - \frac{142372719}{74293664600285527258070900} a^{16} - \frac{735340972913411377807}{37146832300142763629035450} a^{15} - \frac{656582663546626887611857}{37146832300142763629035450} a^{14} - \frac{1175548202014721818550789}{74293664600285527258070900} a^{13} + \frac{5512626802734752597999191}{74293664600285527258070900} a^{12} + \frac{918966366209552808371783}{3714683230014276362903545} a^{11} - \frac{908488431918228067629922}{3714683230014276362903545} a^{10} + \frac{1733284918033877347182969}{7429366460028552725807090} a^{9} + \frac{179908750187885865116363}{18573416150071381814517725} a^{8} - \frac{507712768249238344360287}{3714683230014276362903545} a^{7} + \frac{8374923236555981821407399}{37146832300142763629035450} a^{6} + \frac{12454308990927920875014003}{74293664600285527258070900} a^{5} + \frac{21565437121592197184959683}{74293664600285527258070900} a^{4} - \frac{6720120922811334309842204}{18573416150071381814517725} a^{3} + \frac{3364511985247038913757993}{37146832300142763629035450} a^{2} - \frac{3027688728332862009185147}{37146832300142763629035450} a + \frac{3299112272448226543074163}{37146832300142763629035450}$
Class group and class number
$C_{2}\times C_{18}\times C_{54}$, which has order $1944$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.2, \(\Q(\zeta_{7})^+\), 3.3.3969.1, 6.0.10077696.1, 6.0.24196548096.2, 6.0.33191424.1, 6.0.24196548096.1, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |