Normalized defining polynomial
\( x^{18} - 5 x^{17} + 32 x^{16} - 150 x^{15} + 701 x^{14} - 2365 x^{13} + 7382 x^{12} - 28847 x^{11} + 85736 x^{10} - 197768 x^{9} + 575581 x^{8} - 1390954 x^{7} + 2097717 x^{6} - 4684148 x^{5} + 8327002 x^{4} - 5442740 x^{3} + 6865944 x^{2} - 1604952 x + 1403352 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-141014799178804324718955493650305024=-\,2^{12}\cdot 32009^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 32009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{16} + \frac{1}{12} a^{15} + \frac{1}{6} a^{14} - \frac{1}{2} a^{13} + \frac{5}{12} a^{12} + \frac{5}{12} a^{11} - \frac{1}{3} a^{10} + \frac{1}{12} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{12} a^{6} - \frac{1}{3} a^{5} - \frac{1}{4} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a$, $\frac{1}{95008681225475483718344066408564952355298670762774884674572} a^{17} - \frac{125648430908625257090477655721629553210892774440697737919}{95008681225475483718344066408564952355298670762774884674572} a^{16} + \frac{3308063423877986977321356751736802402514259568873448258622}{23752170306368870929586016602141238088824667690693721168643} a^{15} - \frac{1384667329743236023861161525325853173269056443656492416423}{7917390102122956976528672200713746029608222563564573722881} a^{14} - \frac{14231552830634259554799732994487093240622367114024236417415}{95008681225475483718344066408564952355298670762774884674572} a^{13} - \frac{37849675782774104160050989885790034881830284772567286056831}{95008681225475483718344066408564952355298670762774884674572} a^{12} + \frac{19847687330117358635537703247875810954097256631027393703333}{47504340612737741859172033204282476177649335381387442337286} a^{11} + \frac{22114633401066920847550729348849249582223106250101722245267}{95008681225475483718344066408564952355298670762774884674572} a^{10} + \frac{12516466428121058774087869810953895589216258344493845212055}{47504340612737741859172033204282476177649335381387442337286} a^{9} + \frac{3862892510145063473880847488973336318823100826033270551245}{47504340612737741859172033204282476177649335381387442337286} a^{8} - \frac{7729718609866608745052379856438384816184546062124317842803}{95008681225475483718344066408564952355298670762774884674572} a^{7} + \frac{9919734616227474640558930415786360201686786194848684928623}{23752170306368870929586016602141238088824667690693721168643} a^{6} + \frac{5442815895208825322968078421039369813482423297392587401685}{31669560408491827906114688802854984118432890254258294891524} a^{5} - \frac{14959978635703707372998149338453461845556110630392733608343}{47504340612737741859172033204282476177649335381387442337286} a^{4} + \frac{8626551381347496536455871821824695700334820795616607254478}{23752170306368870929586016602141238088824667690693721168643} a^{3} + \frac{5673817159793738194940712660846579210203244825158910256003}{23752170306368870929586016602141238088824667690693721168643} a^{2} + \frac{323291977927923092521861853201211339559236497885548653800}{7917390102122956976528672200713746029608222563564573722881} a - \frac{173071675716411825203809713505276091327482884062609431527}{2639130034040985658842890733571248676536074187854857907627}$
Class group and class number
$C_{2}\times C_{4156}$, which has order $8312$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1379069.58236 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6912 |
| The 48 conjugacy class representatives for t18n521 |
| Character table for t18n521 is not computed |
Intermediate fields
| 3.3.32009.2, 9.9.32795655776729.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 32009 | Data not computed | ||||||