Normalized defining polynomial
\( x^{18} + 86 x^{16} + 2984 x^{14} + 55319 x^{12} + 603172 x^{10} + 3970251 x^{8} + 15402143 x^{6} + 32173404 x^{4} + 28123264 x^{2} + 2048576 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-141014799178804324718955493650305024=-\,2^{12}\cdot 32009^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 32009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{3}{8} a^{6} + \frac{3}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{8} a^{8} + \frac{1}{8} a^{6} - \frac{3}{16} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{3}{16} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{138450590381872956512} a^{16} - \frac{1}{32} a^{15} - \frac{181843824769864501}{138450590381872956512} a^{14} + \frac{1}{32} a^{13} + \frac{4450561966533510703}{138450590381872956512} a^{12} - \frac{3}{32} a^{11} + \frac{144545299499228637}{69225295190936478256} a^{10} + \frac{1}{16} a^{9} + \frac{597111328268882511}{69225295190936478256} a^{8} - \frac{7}{16} a^{7} + \frac{15687684279985160889}{138450590381872956512} a^{6} + \frac{15}{32} a^{5} + \frac{9213713235532553175}{34612647595468239128} a^{4} - \frac{1}{2} a^{3} + \frac{4632723477806405915}{17306323797734119564} a^{2} - \frac{1}{2} a + \frac{221947262239443022}{4326580949433529891}$, $\frac{1}{138450590381872956512} a^{17} + \frac{2072368562331832695}{69225295190936478256} a^{15} + \frac{30995254274995203}{34612647595468239128} a^{13} + \frac{13268833447299046947}{138450590381872956512} a^{11} - \frac{932367405291161845}{17306323797734119564} a^{9} - \frac{62190772809818377149}{138450590381872956512} a^{7} - \frac{28043861299372735665}{138450590381872956512} a^{5} - \frac{4020438421060653867}{17306323797734119564} a^{3} - \frac{3882686424954643847}{8653161898867059782} a$
Class group and class number
$C_{2}\times C_{4420}$, which has order $8840$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2886487.3294 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6912 |
| The 48 conjugacy class representatives for t18n521 |
| Character table for t18n521 is not computed |
Intermediate fields
| 3.3.32009.1, 9.9.32795655776729.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 32009 | Data not computed | ||||||