Normalized defining polynomial
\( x^{18} + 24 x^{14} + 205 x^{12} - 312 x^{10} + 5412 x^{8} - 6005 x^{6} + 33456 x^{4} - 3612 x^{2} + 123 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14026877608108874998608211968=-\,2^{12}\cdot 3^{21}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{14} a^{10} - \frac{2}{7} a^{8} - \frac{1}{2} a^{7} - \frac{3}{14} a^{4} + \frac{3}{7} a^{2} - \frac{1}{2} a - \frac{3}{7}$, $\frac{1}{14} a^{11} + \frac{3}{14} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{3}{14} a^{5} - \frac{1}{14} a^{3} - \frac{1}{2} a^{2} - \frac{3}{7} a - \frac{1}{2}$, $\frac{1}{140} a^{12} + \frac{1}{70} a^{10} + \frac{8}{35} a^{8} - \frac{13}{35} a^{6} - \frac{13}{70} a^{4} - \frac{1}{2} a^{3} + \frac{11}{35} a^{2} - \frac{43}{140}$, $\frac{1}{140} a^{13} + \frac{1}{70} a^{11} + \frac{8}{35} a^{9} - \frac{13}{35} a^{7} - \frac{13}{70} a^{5} - \frac{1}{2} a^{4} + \frac{11}{35} a^{3} - \frac{43}{140} a$, $\frac{1}{140} a^{14} - \frac{1}{70} a^{10} + \frac{1}{35} a^{8} - \frac{1}{2} a^{7} - \frac{31}{70} a^{6} - \frac{1}{2} a^{5} + \frac{23}{70} a^{4} - \frac{31}{140} a^{2} - \frac{1}{2} a - \frac{1}{10}$, $\frac{1}{140} a^{15} - \frac{1}{70} a^{11} + \frac{1}{35} a^{9} - \frac{1}{2} a^{8} - \frac{31}{70} a^{7} - \frac{1}{2} a^{6} + \frac{23}{70} a^{5} - \frac{31}{140} a^{3} - \frac{1}{2} a^{2} - \frac{1}{10} a$, $\frac{1}{226327004540} a^{16} - \frac{353087821}{226327004540} a^{14} - \frac{4022342}{1616621461} a^{12} - \frac{416255431}{22632700454} a^{10} + \frac{363638789}{113163502270} a^{8} - \frac{34827165193}{113163502270} a^{6} - \frac{1}{2} a^{5} + \frac{85298772631}{226327004540} a^{4} + \frac{824336069}{45265400908} a^{2} - \frac{1}{2} a - \frac{3337061531}{113163502270}$, $\frac{1}{226327004540} a^{17} - \frac{353087821}{226327004540} a^{15} - \frac{4022342}{1616621461} a^{13} - \frac{416255431}{22632700454} a^{11} + \frac{363638789}{113163502270} a^{9} - \frac{34827165193}{113163502270} a^{7} - \frac{1}{2} a^{6} + \frac{85298772631}{226327004540} a^{5} + \frac{824336069}{45265400908} a^{3} - \frac{1}{2} a^{2} - \frac{3337061531}{113163502270} a$
Class group and class number
$C_{2}\times C_{2}\times C_{6}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1315359.70248 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-123}) \), 3.1.4428.2 x3, 3.1.492.1 x3, 3.1.1107.1 x3, 3.1.4428.1 x3, 6.0.2411683632.2, 6.0.29773872.1, 6.0.150730227.1, 6.0.2411683632.1, 9.1.10678935122496.3 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $41$ | 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |