Normalized defining polynomial
\( x^{18} - 3 x^{17} + 27 x^{16} - 52 x^{15} + 249 x^{14} - 378 x^{13} + 1144 x^{12} - 1320 x^{11} + 2610 x^{10} - 2630 x^{9} + 3594 x^{8} - 2052 x^{7} + 2454 x^{6} - 1296 x^{5} + 1647 x^{4} - 963 x^{3} + 567 x^{2} - 162 x + 27 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1399141503834185765244506391=-\,3^{24}\cdot 7^{12}\cdot 71^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{12} a^{14} + \frac{1}{6} a^{11} - \frac{1}{6} a^{8} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{288} a^{15} - \frac{1}{32} a^{14} - \frac{1}{48} a^{13} - \frac{11}{144} a^{12} - \frac{5}{24} a^{11} + \frac{1}{48} a^{10} + \frac{35}{144} a^{9} + \frac{1}{48} a^{8} - \frac{7}{48} a^{7} - \frac{49}{144} a^{6} - \frac{11}{48} a^{5} + \frac{5}{12} a^{4} + \frac{7}{16} a^{3} + \frac{7}{16} a^{2} - \frac{7}{32} a + \frac{7}{32}$, $\frac{1}{288} a^{16} + \frac{1}{32} a^{14} + \frac{5}{72} a^{13} - \frac{1}{16} a^{12} - \frac{3}{16} a^{11} + \frac{7}{72} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{13}{72} a^{7} + \frac{1}{24} a^{6} + \frac{3}{16} a^{5} - \frac{23}{48} a^{4} - \frac{7}{24} a^{3} - \frac{9}{32} a^{2} - \frac{1}{4} a + \frac{15}{32}$, $\frac{1}{259799469467366364768} a^{17} + \frac{191545389012242411}{129899734733683182384} a^{16} - \frac{37085662695292315}{32474933683420795596} a^{15} + \frac{7203144186943755443}{259799469467366364768} a^{14} - \frac{1820188985336922637}{64949867366841591192} a^{13} + \frac{2371394709029162945}{64949867366841591192} a^{12} - \frac{8443073237142724403}{64949867366841591192} a^{11} - \frac{13211725269706315633}{129899734733683182384} a^{10} + \frac{21732998272873445927}{129899734733683182384} a^{9} - \frac{17458275594149286997}{129899734733683182384} a^{8} + \frac{6911690384491709255}{129899734733683182384} a^{7} + \frac{2424558289288340936}{8118733420855198899} a^{6} + \frac{946548512802315067}{7216651929649065688} a^{5} + \frac{3046660919461861493}{10824977894473598532} a^{4} - \frac{17205447113794914829}{86599823155788788256} a^{3} - \frac{1056701616746440251}{7216651929649065688} a^{2} - \frac{5442494542566918445}{14433303859298131376} a + \frac{10896394388098387827}{28866607718596262752}$
Class group and class number
$C_{2}\times C_{14}$, which has order $28$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times A_4$ (as 18T25):
| A solvable group of order 72 |
| The 24 conjugacy class representatives for $C_6\times A_4$ |
| Character table for $C_6\times A_4$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.3969.1, 3.3.3969.2, \(\Q(\zeta_{9})^+\), 6.0.465831.1, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |