Normalized defining polynomial
\( x^{18} - 3 x^{17} + 15 x^{16} - 53 x^{15} + 207 x^{14} - 648 x^{13} + 1867 x^{12} - 5094 x^{11} + 12642 x^{10} - 27983 x^{9} + 54783 x^{8} - 96642 x^{7} + 152588 x^{6} - 201378 x^{5} + 203559 x^{4} - 147022 x^{3} + 71619 x^{2} - 21321 x + 3079 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1399141503834185765244506391=-\,3^{24}\cdot 7^{12}\cdot 71^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{4}{9} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{4}{9}$, $\frac{1}{90} a^{16} + \frac{1}{30} a^{15} - \frac{1}{15} a^{14} + \frac{7}{45} a^{13} - \frac{1}{6} a^{12} + \frac{1}{15} a^{11} - \frac{2}{15} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{23}{90} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{3}{10} a^{4} + \frac{1}{6} a^{3} + \frac{7}{15} a^{2} - \frac{5}{18} a - \frac{13}{30}$, $\frac{1}{639939212659185367209536700} a^{17} - \frac{21967294195567469278742}{10665653544319756120158945} a^{16} + \frac{5107514655953985601535471}{127987842531837073441907340} a^{15} + \frac{19074462002513537620189553}{159984803164796341802384175} a^{14} - \frac{8780576039877437796433199}{213313070886395122403178900} a^{13} + \frac{80001190986576052104134201}{639939212659185367209536700} a^{12} + \frac{795530300026956215365103}{4266261417727902448063578} a^{11} + \frac{15398577276565237237792363}{53328267721598780600794725} a^{10} - \frac{265508301113543506190609}{7110435696213170746772630} a^{9} + \frac{278307098898915871424538487}{639939212659185367209536700} a^{8} + \frac{5217255433060494027274914}{17776089240532926866931575} a^{7} - \frac{5693115202730221986569681}{63993921265918536720953670} a^{6} - \frac{8091382689431073474081319}{35552178481065853733863150} a^{5} + \frac{1780890687554732302064753}{53328267721598780600794725} a^{4} + \frac{99969388300806217145795449}{213313070886395122403178900} a^{3} - \frac{166004248926398179900849921}{639939212659185367209536700} a^{2} - \frac{5588298379108329075587059}{17776089240532926866931575} a - \frac{259328890004884614626871913}{639939212659185367209536700}$
Class group and class number
$C_{2}\times C_{10}$, which has order $20$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times A_4$ (as 18T25):
| A solvable group of order 72 |
| The 24 conjugacy class representatives for $C_6\times A_4$ |
| Character table for $C_6\times A_4$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.3969.2, 3.3.3969.1, \(\Q(\zeta_{7})^+\), 6.0.1118460231.1, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |