Normalized defining polynomial
\( x^{18} - 6 x^{17} + 33 x^{16} - 132 x^{15} + 398 x^{14} - 878 x^{13} + 1591 x^{12} - 2720 x^{11} + 5300 x^{10} - 9712 x^{9} + 11716 x^{8} - 6585 x^{7} + 6401 x^{6} - 25670 x^{5} + 32584 x^{4} + 6876 x^{3} - 33816 x^{2} - 3691 x + 27971 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1396922880341839978152758551=-\,7^{12}\cdot 13^{5}\cdot 43^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{9652559071478923559442723306492692337373} a^{17} + \frac{3506074096809396744972859550760131601000}{9652559071478923559442723306492692337373} a^{16} + \frac{565116351193727350304196185633849234996}{9652559071478923559442723306492692337373} a^{15} + \frac{3825988126600677024094061437429519149320}{9652559071478923559442723306492692337373} a^{14} + \frac{1433570933427714768176345293266138087981}{9652559071478923559442723306492692337373} a^{13} + \frac{287457959028175358901269704270371185002}{9652559071478923559442723306492692337373} a^{12} + \frac{1681046050997790024399690406928230924120}{9652559071478923559442723306492692337373} a^{11} - \frac{48072601519944637461425215057099768069}{9652559071478923559442723306492692337373} a^{10} - \frac{348670508487132619115286698156487591462}{9652559071478923559442723306492692337373} a^{9} + \frac{3555475548237026471565907426508701429414}{9652559071478923559442723306492692337373} a^{8} + \frac{3662558091981944505886429917771660501580}{9652559071478923559442723306492692337373} a^{7} - \frac{4665102533194470514368104835542477784589}{9652559071478923559442723306492692337373} a^{6} + \frac{4056760915254572443226967124141169078770}{9652559071478923559442723306492692337373} a^{5} - \frac{2164803155770846777425887318331721869360}{9652559071478923559442723306492692337373} a^{4} + \frac{3941084744532743721006930445411273769845}{9652559071478923559442723306492692337373} a^{3} + \frac{1438598443486285840036504003535112336397}{9652559071478923559442723306492692337373} a^{2} - \frac{3118820060530488182255459687464984667976}{9652559071478923559442723306492692337373} a - \frac{272397025404886802497969022113320156117}{9652559071478923559442723306492692337373}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}$, which has order $24$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35085.5946511 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 648 |
| The 88 conjugacy class representatives for t18n188 are not computed |
| Character table for t18n188 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.0.1342159.1, 9.9.36763077169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | $18$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 43 | Data not computed | ||||||