Normalized defining polynomial
\( x^{18} - 2 x^{17} + 12 x^{16} - 14 x^{15} + 78 x^{14} - 52 x^{13} + 278 x^{12} - 66 x^{11} + 548 x^{10} + 200 x^{9} + 1278 x^{8} + 2462 x^{7} + 2100 x^{6} + 3778 x^{5} + 4606 x^{4} + 1046 x^{3} + 8996 x^{2} + 676 x + 4394 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-139599627342812498772361216=-\,2^{20}\cdot 37^{6}\cdot 139^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} - \frac{1}{13} a^{11} - \frac{2}{13} a^{10} - \frac{5}{13} a^{9} + \frac{6}{13} a^{8} + \frac{6}{13} a^{7} - \frac{6}{13} a^{6} - \frac{1}{13} a^{5} - \frac{4}{13} a^{4} - \frac{4}{13} a^{3} - \frac{5}{13} a^{2} - \frac{6}{13} a$, $\frac{1}{13} a^{15} - \frac{1}{13} a^{12} - \frac{2}{13} a^{11} - \frac{5}{13} a^{10} + \frac{6}{13} a^{9} + \frac{6}{13} a^{8} - \frac{6}{13} a^{7} - \frac{1}{13} a^{6} - \frac{4}{13} a^{5} - \frac{4}{13} a^{4} - \frac{5}{13} a^{3} - \frac{6}{13} a^{2}$, $\frac{1}{13} a^{16} - \frac{1}{13} a^{13} - \frac{2}{13} a^{12} - \frac{5}{13} a^{11} + \frac{6}{13} a^{10} + \frac{6}{13} a^{9} - \frac{6}{13} a^{8} - \frac{1}{13} a^{7} - \frac{4}{13} a^{6} - \frac{4}{13} a^{5} - \frac{5}{13} a^{4} - \frac{6}{13} a^{3}$, $\frac{1}{2297483027714728279137433890330331} a^{17} + \frac{14472322059966740471547006926118}{2297483027714728279137433890330331} a^{16} - \frac{50882472667836657711126059729115}{2297483027714728279137433890330331} a^{15} + \frac{14623540170036132906977202987839}{2297483027714728279137433890330331} a^{14} + \frac{51454056936811701701261800538633}{176729463670363713779802606948487} a^{13} + \frac{55683699916253718750037583080509}{176729463670363713779802606948487} a^{12} + \frac{472828221154899257238701226722585}{2297483027714728279137433890330331} a^{11} + \frac{861074881676726427990775992520088}{2297483027714728279137433890330331} a^{10} - \frac{239516000686412074602983277267734}{2297483027714728279137433890330331} a^{9} - \frac{574154101071625559732109503763793}{2297483027714728279137433890330331} a^{8} - \frac{705061257311571574477645232923385}{2297483027714728279137433890330331} a^{7} - \frac{395793457857106916336625287164508}{2297483027714728279137433890330331} a^{6} + \frac{778879935072257246075140015003028}{2297483027714728279137433890330331} a^{5} - \frac{736111569318770419127523228530607}{2297483027714728279137433890330331} a^{4} - \frac{225940390864563252432326723919210}{2297483027714728279137433890330331} a^{3} + \frac{909676172821801721091948452028411}{2297483027714728279137433890330331} a^{2} - \frac{6270752093309297843725639040382}{13594574128489516444600200534499} a - \frac{4621250990676646530408318797143}{13594574128489516444600200534499}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 342085.813262 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 49 conjugacy class representatives for t18n486 |
| Character table for t18n486 is not computed |
Intermediate fields
| 3.3.148.1, 6.0.12178624.2, 9.3.1802436352.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $139$ | 139.2.1.2 | $x^{2} + 556$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 139.2.1.2 | $x^{2} + 556$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.1.2 | $x^{2} + 556$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.4.2.1 | $x^{4} + 417 x^{2} + 77284$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 139.6.0.1 | $x^{6} - x + 21$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |