Normalized defining polynomial
\( x^{18} - 3 x^{17} + 13 x^{16} - 14 x^{15} + 49 x^{14} - 22 x^{13} - 184 x^{12} - 344 x^{11} + 2538 x^{10} - 15190 x^{9} + 54562 x^{8} - 33440 x^{7} + 69570 x^{6} - 112288 x^{5} + 224883 x^{4} - 115871 x^{3} + 162369 x^{2} - 11584 x + 215851 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13944985186220076513047292273231=-\,3^{9}\cdot 7^{12}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(273=3\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{273}(256,·)$, $\chi_{273}(1,·)$, $\chi_{273}(134,·)$, $\chi_{273}(79,·)$, $\chi_{273}(16,·)$, $\chi_{273}(211,·)$, $\chi_{273}(212,·)$, $\chi_{273}(22,·)$, $\chi_{273}(23,·)$, $\chi_{273}(218,·)$, $\chi_{273}(155,·)$, $\chi_{273}(95,·)$, $\chi_{273}(100,·)$, $\chi_{273}(233,·)$, $\chi_{273}(235,·)$, $\chi_{273}(172,·)$, $\chi_{273}(179,·)$, $\chi_{273}(116,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{30} a^{12} - \frac{1}{6} a^{11} - \frac{1}{30} a^{10} - \frac{1}{5} a^{9} - \frac{7}{30} a^{8} + \frac{7}{30} a^{7} - \frac{2}{5} a^{6} - \frac{1}{6} a^{5} + \frac{13}{30} a^{4} - \frac{13}{30} a^{3} - \frac{1}{6} a + \frac{7}{30}$, $\frac{1}{60} a^{13} - \frac{1}{60} a^{12} + \frac{3}{20} a^{11} + \frac{1}{12} a^{10} - \frac{1}{60} a^{9} + \frac{3}{20} a^{8} + \frac{1}{60} a^{7} + \frac{7}{60} a^{6} - \frac{7}{60} a^{5} - \frac{7}{20} a^{4} + \frac{23}{60} a^{3} + \frac{5}{12} a^{2} - \frac{13}{60} a - \frac{17}{60}$, $\frac{1}{60} a^{14} - \frac{1}{10} a^{11} + \frac{1}{5} a^{10} - \frac{1}{15} a^{9} + \frac{1}{10} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{3}{10} a^{4} - \frac{7}{15} a^{3} + \frac{1}{5} a^{2} + \frac{1}{6} a - \frac{13}{60}$, $\frac{1}{300} a^{15} - \frac{1}{150} a^{14} - \frac{1}{150} a^{13} + \frac{1}{75} a^{12} - \frac{1}{75} a^{11} + \frac{11}{75} a^{10} + \frac{7}{75} a^{9} + \frac{23}{150} a^{8} + \frac{11}{50} a^{7} + \frac{13}{30} a^{6} + \frac{7}{75} a^{5} - \frac{32}{75} a^{4} - \frac{13}{75} a^{3} - \frac{1}{75} a^{2} - \frac{47}{300} a - \frac{16}{75}$, $\frac{1}{300} a^{16} - \frac{1}{300} a^{14} + \frac{1}{75} a^{12} + \frac{1}{50} a^{11} + \frac{13}{150} a^{10} - \frac{17}{75} a^{9} + \frac{19}{150} a^{8} + \frac{11}{150} a^{7} - \frac{11}{25} a^{6} - \frac{1}{25} a^{5} + \frac{41}{150} a^{4} - \frac{49}{150} a^{3} - \frac{29}{60} a^{2} + \frac{7}{50} a + \frac{107}{300}$, $\frac{1}{896882960878596456291765410917951037245200} a^{17} + \frac{442178448292571750278966898709829369223}{448441480439298228145882705458975518622600} a^{16} + \frac{469741660810163608221285344584642546121}{298960986959532152097255136972650345748400} a^{15} - \frac{3383079541025426216716977486375741754039}{896882960878596456291765410917951037245200} a^{14} + \frac{240977676030709182866116018127308992863}{448441480439298228145882705458975518622600} a^{13} + \frac{11415380664351664677804326355147537092}{18685061684970759506078446060790646609275} a^{12} - \frac{20062099377376814752238110487073811914733}{112110370109824557036470676364743879655650} a^{11} + \frac{4423760516300632921968828766195076442131}{37370123369941519012156892121581293218550} a^{10} + \frac{8715192804142967715702724563030224463007}{149480493479766076048627568486325172874200} a^{9} + \frac{35021326488072248516130530346466026190021}{224220740219649114072941352729487759311300} a^{8} + \frac{13984324426886417216042959298885537241169}{149480493479766076048627568486325172874200} a^{7} - \frac{3187546526625190810626050413401940761099}{149480493479766076048627568486325172874200} a^{6} - \frac{142040495969630747860063116570738236417}{37370123369941519012156892121581293218550} a^{5} - \frac{7807296204320892443509784440430938930797}{37370123369941519012156892121581293218550} a^{4} - \frac{145577023538590008624940950558813200153021}{896882960878596456291765410917951037245200} a^{3} + \frac{309471358295658258775343824531238242253}{74740246739883038024313784243162586437100} a^{2} + \frac{81774648422546615477349915718240574298927}{298960986959532152097255136972650345748400} a - \frac{327250677181055400127523749525880968764239}{896882960878596456291765410917951037245200}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{76}$, which has order $1216$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.3.8281.1, 3.3.169.1, \(\Q(\zeta_{7})^+\), 3.3.8281.2, 6.0.24069811311.1, 6.0.10024911.1, 6.0.142424919.1, 6.0.24069811311.2, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |