Normalized defining polynomial
\( x^{18} - 4 x^{17} + 5 x^{16} - 16 x^{15} + 69 x^{14} - 82 x^{13} - 86 x^{12} + 196 x^{11} + 72 x^{10} - 294 x^{9} + 127 x^{8} - 204 x^{7} + 759 x^{6} - 1052 x^{5} + 769 x^{4} - 336 x^{3} + 90 x^{2} - 14 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-138999008151675000000000000=-\,2^{12}\cdot 3^{9}\cdot 5^{14}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{11} + \frac{1}{10} a^{10} - \frac{1}{10} a^{7} + \frac{1}{10} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{13} + \frac{1}{10} a^{10} - \frac{1}{10} a^{8} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} + \frac{1}{10} a^{3} - \frac{2}{5}$, $\frac{1}{10} a^{14} + \frac{1}{10} a^{11} - \frac{1}{10} a^{9} - \frac{1}{10} a^{6} - \frac{1}{2} a^{5} + \frac{1}{10} a^{4} - \frac{2}{5} a$, $\frac{1}{140} a^{15} + \frac{3}{140} a^{14} - \frac{3}{70} a^{13} - \frac{1}{140} a^{12} - \frac{3}{28} a^{11} - \frac{9}{140} a^{10} - \frac{9}{70} a^{9} - \frac{19}{140} a^{8} + \frac{3}{70} a^{7} - \frac{3}{7} a^{6} + \frac{6}{35} a^{5} - \frac{3}{35} a^{4} + \frac{9}{140} a^{3} - \frac{41}{140} a^{2} - \frac{3}{7} a + \frac{57}{140}$, $\frac{1}{140} a^{16} - \frac{1}{140} a^{14} + \frac{3}{140} a^{13} + \frac{1}{70} a^{12} - \frac{17}{70} a^{11} + \frac{9}{140} a^{10} + \frac{3}{20} a^{9} + \frac{1}{20} a^{8} + \frac{12}{35} a^{7} - \frac{3}{70} a^{6} - \frac{1}{10} a^{5} - \frac{11}{140} a^{4} + \frac{29}{70} a^{3} - \frac{9}{20} a^{2} + \frac{27}{140} a - \frac{31}{140}$, $\frac{1}{140} a^{17} + \frac{3}{70} a^{14} - \frac{1}{35} a^{13} - \frac{1}{20} a^{12} - \frac{17}{70} a^{11} - \frac{3}{14} a^{10} - \frac{11}{140} a^{9} + \frac{29}{140} a^{8} + \frac{3}{10} a^{7} - \frac{23}{70} a^{6} + \frac{11}{28} a^{5} + \frac{23}{70} a^{4} - \frac{27}{70} a^{3} - \frac{2}{5} a^{2} - \frac{7}{20} a + \frac{3}{28}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{35}{2} a^{17} + \frac{249}{4} a^{16} - \frac{597}{10} a^{15} + \frac{5057}{20} a^{14} - \frac{21903}{20} a^{13} + 947 a^{12} + \frac{9687}{5} a^{11} - \frac{10309}{4} a^{10} - \frac{48657}{20} a^{9} + \frac{81723}{20} a^{8} - \frac{727}{2} a^{7} + \frac{33781}{10} a^{6} - 11809 a^{5} + \frac{262547}{20} a^{4} - \frac{75099}{10} a^{3} + \frac{9849}{4} a^{2} - \frac{9157}{20} a + \frac{801}{20} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 560964.0932099912 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.140.1, 6.0.826875.2, 6.0.529200.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 5.12.10.2 | $x^{12} + 15 x^{6} + 100$ | $6$ | $2$ | $10$ | $C_6\times S_3$ | $[\ ]_{6}^{6}$ | |
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.5.1 | $x^{6} - 28$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |