Normalized defining polynomial
\( x^{18} + 485982 x^{12} + 46823693841 x^{6} + 195920474112 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1389021752112961964809440433226376447489723810648175849165227=-\,3^{27}\cdot 8677^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2194.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 8677$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{18} a^{6} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{396} a^{7} - \frac{1}{6} a^{5} - \frac{1}{2} a^{2} + \frac{37}{132} a$, $\frac{1}{792} a^{8} - \frac{95}{264} a^{2}$, $\frac{1}{792} a^{9} - \frac{95}{264} a^{3}$, $\frac{1}{792} a^{10} + \frac{37}{264} a^{4} - \frac{1}{2} a$, $\frac{1}{4752} a^{11} - \frac{1}{1584} a^{8} - \frac{359}{1584} a^{5} - \frac{1}{3} a^{3} - \frac{169}{528} a^{2}$, $\frac{1}{265122182160} a^{12} - \frac{1}{2376} a^{10} - \frac{1}{1584} a^{9} - \frac{194443499}{17674812144} a^{6} + \frac{95}{792} a^{4} - \frac{169}{528} a^{3} + \frac{1}{3} a^{2} - \frac{78391066}{167375115}$, $\frac{1}{265122182160} a^{13} - \frac{1}{1584} a^{10} - \frac{15910043}{17674812144} a^{7} + \frac{95}{528} a^{4} - \frac{1}{3} a^{3} + \frac{562856453}{3682252530} a$, $\frac{1}{2916344003760} a^{14} - \frac{24692533}{97211466792} a^{8} - \frac{1}{6} a^{4} + \frac{20403487549}{324038222640} a^{2} - \frac{1}{2} a$, $\frac{1}{256638272330880} a^{15} - \frac{2725011055}{8554609077696} a^{9} - \frac{1}{6} a^{5} + \frac{9390508758889}{28515363592320} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{33876251947676160} a^{16} + \frac{105287729825}{1129208398255872} a^{10} + \frac{1}{2376} a^{8} - \frac{1}{792} a^{7} - \frac{1}{6} a^{5} - \frac{877394093865911}{3764027994186240} a^{4} + \frac{37}{792} a^{2} - \frac{37}{264} a - \frac{1}{3}$, $\frac{1}{1490555085697751040} a^{17} - \frac{1}{5832688007520} a^{14} - \frac{3696760749151}{49685169523258368} a^{11} - \frac{1}{2376} a^{9} - \frac{49024609}{97211466792} a^{8} + \frac{14653973942751049}{165617231744194560} a^{5} - \frac{1}{6} a^{4} + \frac{95}{792} a^{3} + \frac{96201175901}{648076445280} a^{2} - \frac{1}{6} a$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{9}\times C_{9}\times C_{1386}\times C_{18018}$, which has order $54615837276$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{111824955264} a^{15} + \frac{243959}{55912477632} a^{9} + \frac{15781574571}{37274985088} a^{3} + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 98053733517680.33 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), Deg 3 x3, Deg 3, 6.0.153053108305062507.1, 6.0.111575715954390567603.1, Deg 6 x2, Deg 9 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 8677 | Data not computed | ||||||