Normalized defining polynomial
\( x^{18} + 9 x^{16} - 26 x^{15} + 84 x^{14} - 105 x^{13} + 74 x^{12} + 204 x^{11} - 444 x^{10} + 603 x^{9} - 147 x^{8} - 372 x^{7} + 831 x^{6} - 705 x^{5} + 411 x^{4} - 175 x^{3} + 54 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-137303833711203000000000000=-\,2^{12}\cdot 3^{9}\cdot 5^{12}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{4}{9} a^{5} + \frac{4}{9} a^{4} + \frac{4}{9} a^{2} + \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{11} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} - \frac{2}{9} a^{3} + \frac{2}{9} a^{2} - \frac{1}{9} a - \frac{2}{9}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{11} + \frac{1}{9} a^{9} - \frac{1}{9} a^{6} - \frac{1}{9} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a - \frac{1}{9}$, $\frac{1}{1071} a^{15} - \frac{2}{153} a^{14} - \frac{19}{1071} a^{13} + \frac{4}{153} a^{12} + \frac{2}{17} a^{11} + \frac{8}{63} a^{10} - \frac{157}{1071} a^{9} + \frac{148}{1071} a^{8} - \frac{107}{1071} a^{7} - \frac{14}{153} a^{6} - \frac{23}{1071} a^{5} + \frac{409}{1071} a^{4} - \frac{79}{1071} a^{3} + \frac{188}{1071} a^{2} + \frac{121}{357} a + \frac{424}{1071}$, $\frac{1}{1071} a^{16} + \frac{23}{1071} a^{14} + \frac{2}{51} a^{12} - \frac{4}{1071} a^{11} + \frac{9}{119} a^{10} - \frac{3}{119} a^{9} - \frac{59}{357} a^{8} - \frac{7}{153} a^{7} + \frac{11}{357} a^{6} + \frac{29}{357} a^{5} - \frac{101}{357} a^{4} + \frac{1}{7} a^{3} + \frac{377}{1071} a^{2} - \frac{206}{1071} a + \frac{5}{51}$, $\frac{1}{10681083} a^{17} + \frac{4247}{10681083} a^{16} - \frac{4139}{10681083} a^{15} - \frac{8416}{1186787} a^{14} - \frac{195056}{10681083} a^{13} - \frac{274936}{10681083} a^{12} - \frac{161003}{3560361} a^{11} + \frac{665569}{10681083} a^{10} + \frac{193250}{10681083} a^{9} + \frac{99065}{1525869} a^{8} - \frac{1230125}{10681083} a^{7} - \frac{2306}{89757} a^{6} - \frac{55732}{169541} a^{5} + \frac{980354}{3560361} a^{4} + \frac{314779}{3560361} a^{3} + \frac{4075963}{10681083} a^{2} - \frac{1705346}{3560361} a + \frac{255163}{1186787}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{902522}{3560361} a^{17} - \frac{177601}{3560361} a^{16} - \frac{8215939}{3560361} a^{15} + \frac{7266912}{1186787} a^{14} - \frac{24014203}{1186787} a^{13} + \frac{27245913}{1186787} a^{12} - \frac{54267007}{3560361} a^{11} - \frac{64096705}{1186787} a^{10} + \frac{120821291}{1186787} a^{9} - \frac{23100129}{169541} a^{8} + \frac{51381685}{3560361} a^{7} + \frac{47186122}{508623} a^{6} - \frac{98883926}{508623} a^{5} + \frac{171579262}{1186787} a^{4} - \frac{98100136}{1186787} a^{3} + \frac{114805613}{3560361} a^{2} - \frac{37599367}{3560361} a + \frac{366514}{209433} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 732910.4094523011 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.300.1 x3, 6.0.270000.1, 9.3.2255067000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5 | Data not computed | ||||||
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |